• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New brine processor increases water recycling on International Space Station

Bioengineer by Bioengineer
March 1, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NASA’s newest technology demonstration is designed to improve water recycling on the International Space Station and boost the efficiency of water recycling for the Artemis generation

IMAGE

Credit: NASA/Robert Markowitz

NASA’s newest technology demonstration, which launched on Northrop Grumman’s 15th commercial resupply services mission, is designed to improve water recycling on the International Space Station and boost the efficiency of water recycling for the Artemis generation.

The space station’s regenerative life support hardware, called the Environmental Control and Life Support System, provides clean air and water for station crews. A new Brine Processor Assembly (BPA) will be tied into the system and allow more water to be recovered from crew urine. This new piece of technology ultimately will help scientists build better systems that can be used on future Moon and Mars missions and habitats.

ECLSS has enabled more crew members to live aboard the station for longer expeditions with fewer resource shipments. The key components of the regenerative ECLSS are the Water Recovery System and the Air Revitalization System.

The Air Revitalization System cleans the circulating cabin air by removing any contaminants, including carbon dioxide, and produces oxygen and replaces any oxygen lost to airlock depressurization and experimental use.

The Water Recovery System provides clean water for astronaut use by recycling urine, cabin humidity condensate from crew sweat, respiration, and hygiene, and water recovered from the Air Revitalization System. The Urine Processor Assembly, part of the Water Recovery System, was designed for 85% water recovery from crew urine and has been improved over the last year to now recover 87% because of analysis that showed there was still a margin against calcium sulfate precipitation. “That distillate is combined with the condensate and processed through the Water Processing Assembly (WPA), which recovers 100% of the water it processes,” says Layne Carter, International Space Station Water Subsystem Manager at Marshall. “As a result, our overall water recovery is about 93.5%.”

Astronaut crews on long-duration exploration missions will need ECLSS systems to recover closer to 98% of the water they bring along at the start of their journeys.

“To leave low-Earth orbit and enable long-duration exploration far from Earth, we need to close the water loop,” says Caitlin Meyer, deputy project manager for Advanced Exploration Systems Life Support Systems at NASA’s Johnson Space Center in Houston. “Current urine water recovery systems utilize distillation, which produces a brine. The brine processor will accept that water-containing effluent and extract the remaining water.”

Once installed in the station’s Tranquility module, the BPA will pump brine from the UPA’s Advanced Recycle Filter Tank Assembly into a dual-membrane bladder. This bladder will pass water vapor selectively into the cabin atmosphere. Once in the atmosphere, the water will be pulled from the air using another part of the Water Recovery System, the condensing heat exchanger. The heat exchanger will send that moisture back into the Water Processing Assembly, where it will be converted back into drinking water. The BPA’s used bladders containing the resulting dried brine will be removed and stored, and eventually discarded or returned to Earth for study.

“With this new brine processor assembly, we’ll recover additional water from the urine brine produced by the Urine Processor, such that the overall water recovery is closer to 98%”, says Carter.

“With the new BPA and the Universal Waste Management System launched on the prior Northrop Grumman resupply flight, the evolution of the ISS Water Recovery System into the Exploration Water Recovery System is nearly complete,” said Laura Shaw, International Space Station Exploration ECLSS manager. “We will have some additional component upgrades to improve reliability, but now have all the assemblies in place. This is a big milestone for the Exploration ECLSS.”

The brine processor ultimately will help enable long-duration crewed exploration missions and reduce the need for water resupply from Earth. The technology demonstration’s ability to improve the recovery of water from urine brine also has potential use on Earth in harsh and remote settings with limited access to water.

###

Paragon Space Development Corporation of Tucson, Arizona, developed this technology demonstration in cooperation with NASA’s Johnson and Marshall Space Flight Centers.

Media Contact
Leah Cheshier
[email protected]

Original Source

http://www.nasa.gov/feature/new-brine-processor-increases-water-recycling-on-international-space-station

Tags: Technology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

September 12, 2025

Gastroschisis Rates Shift Pre- and Post-COVID

September 12, 2025

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

September 12, 2025

East Palestine Train Derailment: Chemical Hazard Insights

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

Gastroschisis Rates Shift Pre- and Post-COVID

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.