• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New boost for high-brightness dyes research

Bioengineer by Bioengineer
October 20, 2020
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: StabiLux

StabiLux Biosciences, a spin-out company from research conducted at Michigan Technological University, has received an additional $500,000 supplementary grant from the National Science Foundation (NSF). This new NSF Small Business Technology Transfer (STTR) Phase IIB project, led by Nazmiye Yapici, Ph.D. ’13, and Dongyan Zhang, adjunct associate professor in physics, will support the commercialization of high-brightness dyes for medical uses.

StabiLux fluorescent dyes can be a thousand times brighter than any existing dye molecule. The dyes emit fluorescence in various colors and can be labeled with desired antibodies for specific antigen detection. They were developed by Yapici, Zhang, and Yoke Khin Yap, professor of physics, University Professor, and the founder of StabiLux.

“We anticipate our technology will have a significant impact in the field of flow cytometry, and allow scientists to detect what was previously undetectable, specifically rare antigens on blood cells,” Yapici said.

The new NSF funding, along with the original Phase I, Phase II project and other supplementary grants, brings NSF funding for StabiLux research to more than $1.6 million. The Phase IIB award is a match from the NSF after the company received outside investments of more than $1 million led by Steve Tokarz, StabiLux CEO.

The new grant will allow StabiLux to refine its high-brightness dyes into commercial-grade products over the next 12 to 24 months. The technology was established based on a series of NSF grants, including the NSF I-Corps team project led by Zhang in 2014.

The technology has also received commercialization grants from the state of Michigan and the Michigan Economic Development Corporation.

“This is truly a platform technology that can revitalize any organic dye that is not bright into a series of novel high-brightness dyes with tunable brightness and high photostability,” Yap said. “Organic dyes are biologically compatible and cost effective for many biomedical applications. Making the organic dyes brighter will enhance current diagnosis technology for early diseases detection that are currently undetectable.”

###

Media Contact
Kelley Christensen
kelleyc@mtu.edu

Original Source

https://www.mtu.edu/news/press/releases/2020/new-boost-for-highbrightness-dyes-research.html

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.