• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New biomaterials inspired by nature’s stickiest creatures are on the horizon

Bioengineer by Bioengineer
June 26, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NYU Tandon’s Jin Kim Montclare wins Department of Defense funding for her work with wet adhesion

BROOKLYN, New York, Wednesday, June 26, 2019 – The first attempts have launched to bio-engineer proteins like those found in mussels and tree frogs to yield similar amazing wet adhesion in sealants, coatings, glues, and medical adhesives.

The Army Research Office , an element of U.S. Army Combat Capability Development Command’s Army Research Laboratory, recently awarded a three-year grant of $400,000 for the project, led by NYU Tandon School of Engineering Professor of Chemical and Biomolecular Engineering Jin Kim Montclare.

Crucial proteins in these particular animals exhibit unique behaviors and chemical reactivity. Montclare and her team are creating hydrogels that borrow certain key features of those proteins: the separation of a solution into two distinct liquids in response to external stimuli, the incorporation of nonstandard amino acids, and patterning, such as the polygonal pillars seen in the toe pads of tree frogs.

“We’re employing strategies to control both the nano-scale conformational changes within the protein material and the micro-scaled patterns,” Montclare explained. “The resulting set of proposed protein- engineered materials will bear insight into how we can impact the overall physicochemical properties while also developing novel biologically inspired adhesives. This research could have tremendous implications in biomedical applications relevant to the military and society as a whole and could later broadly impact products in diverse areas like biosensors, programmable devices, reconfigurable and self-healing materials, living-anti-corrosion paints, and robust human-machine interfaces, to name just a few.”

“Dr. Montclare aims to create artificial biological adhesives that controllably interface with non-living inorganic materials. This kind of responsive biological adhesive is particularly exciting, as it could be used for protective coatings that could extend the life of military vehicles or devices by eliminating contaminants that degrade paints or coatings,” said Dr. Stephanie McElhinny, Biochemistry Program manager at the Army Research Office. “This research effort also includes a strong collaboration at the

Army Research Laboratory with Dr. Richard Fu, who will explore the ability to transfer extremely precise patterns of these protein-based adhesives to surfaces using specifically designed photomasks generated using ARL’s Specialty Electronics Materials and Sensors Cleanroom (SEMASC) Facility.”

Earlier this year, the Department of Defense funded a new instrumentation system for her lab that will allow her to harness the most powerful methods of synthetic biology and protein engineering. Montclare, who was recently inducted into the American Institute for Medical and Biological Engineering (AIMBE) College of Fellows, has been recognized for developing protein-lipid macromolecule systems that can deliver genes, nanoparticles, and drugs for the potential treatment of multi-drug resistant cancer cells, diabetes, and other conditions requiring a variety of therapeutic approaches. She has also made breakthrough strides in using engineered proteins to detoxify organophosphates, compounds commonly used in pesticides and warfare agents (such as sarin) that pose grave health hazards to people and animals.

###

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, one of the country’s foremost private research universities, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

Media Contact
Kathleen Hamilton
[email protected]

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMicrobiologyResearch/Development
Share12Tweet7Share2ShareShareShare1

Related Posts

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025
Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025

Resilient Order Emerges from Chasing and Splashing

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Atomically Precise Antibody Design via RFdiffusion

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

Evaluating Phylogenetic Confidence During Pandemics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.