• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 24, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New approach to flexible robotics and metamaterials design mimics nature, encourages sustainability

Bioengineer by Bioengineer
February 28, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAMPAIGN, Ill. — A new study challenges the conventional approach to designing soft robotics and a class of materials called metamaterials by utilizing the power of computer algorithms. Researchers from the University of Illinois Urbana-Champaign and Technical University of Denmark can now build multimaterial structures without dependence on human intuition or trial-and-error to produce highly efficient actuators and energy absorbers that mimic designs found in nature.

Illinois researchers Weichen Li, left, and professor Shelly Zhang

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — A new study challenges the conventional approach to designing soft robotics and a class of materials called metamaterials by utilizing the power of computer algorithms. Researchers from the University of Illinois Urbana-Champaign and Technical University of Denmark can now build multimaterial structures without dependence on human intuition or trial-and-error to produce highly efficient actuators and energy absorbers that mimic designs found in nature.

The study, led by Illinois civil and environmental engineering professor Shelly Zhang, uses optimization theory and an algorithm-based design process called topology optimization. Also known as digital synthesis, the design process builds composite structures that can precisely achieve complex prescribed mechanical responses.

The study results are published in the Proceedings of the National Academy of Sciences.

“The complex mechanical responses called for in soft robotics and metamaterials require the use of multiple materials – but building these types of structures can be a challenge,” Zhang said. “There are so many materials to choose from, and determining the optimal combination of materials to fit a specific function presents an overwhelming amount of data for a researcher to process.”

Click here to see a video describing this research. [Please add hyperlink to “click here”: https://youtu.be/ouE7_kXTNZ8]

Zhang’s team set its sights on designing macroscale structures with the prescribed properties of swift stiffening, large-scale deformation buckling, multiphase stability and long-lasting force plateaus.

The new digital synthesis process generated structures with optimal geometric characteristics composed of the optimal materials for the prescribed functions.

Researchers ended up with model devices made from two different polydimethylsiloxane, or PDMS, elastomers with a basic geometry that looks remarkably like the legs of a frog – or a family of three frogs, each with different geometries that use the two PDMS elastomers in various arrangements that function very much like biological muscle and bone.

“It is quite remarkable that what we found is very much aligned with what biology and evolution create naturally,” Zhang said. “For example, when we asked the algorithm to develop a device with swifter stiffening responses, it would respond with larger ‘muscles’ on our mechanical frogs, just as it might happen in nature.”

Zhang said the work’s overarching strengths are found in its sustainability characteristics.

“We have designed reusable and fully recoverable energy dissipators, which is aligned with today’s demand for sustainable devices that are good for the environment. These are not single-use devices. We designed them using purely elastic materials, allowing us to reuse them many times,” she said.

The researchers said their digital synthesis technique will increase the range of programmable metamaterials that can handle complex, previously impossible mechanical responses, particularly in the areas of soft robotics and biomedical devices.

The National Science Foundation and the Villum Foundation supported this research.

Zhang also is affiliated with mechanical science and engineering at Illinois.

 

Editor’s notes:

To reach Shelly Zhang, call 217-300-1815; email [email protected]

The paper “Digital synthesis of free-form multimaterial structures for realization of arbitrary programmed mechanical responses” is available online and from the U. of I. News Bureau. DOI: 10.1073/pnas.2120563119.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2120563119

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Digital synthesis of free-form multimaterial structures for realization of arbitrary programmed mechanical responses

Article Publication Date

28-Feb-2022

COI Statement

The authors declare no competing interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Elodie Briefer

The case for speaking politely to animals

May 24, 2022
Deciphering Epigenomic Codes

Mount Sinai launches Neural Epigenomics Research Center

May 23, 2022

Foreign fishing fleets and trade are taking fish nutrients away from malnourished people

May 23, 2022

Rice bioengineers are shining light on bacterial stress

May 23, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesVirologyWeather/StormsVirusVehiclesViolence/CriminalsZoology/Veterinary ScienceWeaponryUrogenital SystemUniversity of WashingtonUrbanizationVaccine

Recent Posts

  • Human influence is the culprit for warm and wet winters in northwest Russia
  • The case for speaking politely to animals
  • Mount Sinai launches Neural Epigenomics Research Center
  • Easy as an inkjet, a new soft printing technique has opened the way for pixelated elastics
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....