• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New approach allows faster test of urea in body fluids

Bioengineer by Bioengineer
February 22, 2023
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, a research team from the Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS) of Chinese Academy of Sciences developed a wearable sensing patch and realized rapid quantitative analysis of urea.

New Approach Allows Faster Test of Urea in Body Fluids

Credit: KANG Xiaohui

Recently, a research team from the Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS) of Chinese Academy of Sciences developed a wearable sensing patch and realized rapid quantitative analysis of urea.

The related results have been published in prestigious international journal Analytical Chemistry.

Urea, which is excreted through sweat, urine, saliva and blood, is considered an important indicator of renal function in clinical diagnosis. Effective detection of urea level is crucial for early detection of disease. Wearable fluorescence-based sensors have attracted much attention of users, but traditional fluorescent hydrogels are excited by short wavelength. It is easy to be interfered by spontaneous and background fluorescence in the detection of biological samples. Upconversion nanoparticles (UCNPs), which can eliminate the self-fluorescence and background interference of biological samples, are therefore an effective strategy to detect human biomarkers with high sensitivity.

“We embedded an upconversion optical probe into a three-dimensional porous polyacrylamide (PAM) hydrogel, and combined the patch with a smart phone color reader,” said Prof. JIANG Changlong, who led the team.

The PAM hydrogel sensor was based on an upconversion optical probe, which was composed of UCNPs and p-dimethylamino-cinnamaldehyde (p-DMAC). Due to the internal filtration effect (IFE), the red product produced by the reaction of urea and p-DMAC quenched the green fluorescence of UCNPs and made the upconversion fluorescence change from yellow to red, thus realizing the fluorescence detection of urea.

On this basis, a flexible wearable sensor was made by combining PAM hydrogel, and a portable sensor platform was constructed by 3D printing technology.

The detection limits (LODs) of the self-designed upconversion fluorescent probe and hydrogel sensor were just 1.4μM and 30μM, respectively. They were much lower than the urea content in sweat and means higher sensitivity.

The designed sensing patch provides a convenient and accurate sensing strategy for detecting biomarkers in body fluids, and has the potential to be developed into a device for providing disease warning and clinical diagnosis, according to the team.



Journal

Analytical Chemistry

DOI

10.1021/acs.analchem.2c03806

Article Title

Multiplex chroma response wearable hydrogel patch: Visual monitoring of urea in body fluids for health prognosis

Article Publication Date

8-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Hydrostatic Pressure-Enabled Tunable Singlet Fission Materials

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

March 23, 2023
New wood-based technology removes 80 percent of dye pollutants in wastewater

New wood-based technology removes 80% of dye pollutants in wastewater

March 23, 2023

Copper artifacts unearth new cultural connections in southern Africa

March 22, 2023

Research uncovers details about the mysterious author of early astronomy textbooks

March 22, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In