• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New anti-cancer therapy: Converting glioma cells into neurons

Bioengineer by Bioengineer
March 23, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jinan University

Glioma is a fatal neurological disorder that has limited interventional treatment, despite extensive research over the past several decades. A research team led by Dr. Gong Chen, a former professor at Penn State University and now leading a brain repair center at Jinan University in China, has developed a novel gene therapy to reprogram glioma cells into functional neurons, shedding new light on glioma treatment. The work has been published in Cancer Biology & Medicine on March 22, 2021

Glioma is a common malignant cancer growing in the central nervous system. For patients with a type of severe glioma called glioblastoma, the median survival time is typically less than 15 months. Surgical removal followed with chemotherapy and/or radiation therapy are the major ways of treatment but their effectiveness is limited. Several clinical trials are ongoing using engineered immune cells to target primary or recurrent glioma, but still meet with serious hurdles to be solved.

Glioma is caused by aggressive proliferation of glial cells. Chen’s team has previously published a series of work demonstrating that brain internal glial cells can be directly converted into functional neurons after overexpressing neural transcription factors such as NeuroD1 and Dlx2. In this work, the team further extended their research from glial cells to glioma cells and discovered that neural transcription factors can also efficiently convert glioma cells into neurons.

“Our cell conversion therapy for glioma is quite unique and distinct from conventional cancer therapies that typically aim at killing cancer cells,” commented by Prof. Chen. “One major side effect caused by killing cancer cells is the inevitable collateral damage on normal cells. In contrast, when we use gene therapy technology to convert glioma cells into neurons, normal cells are minimally affected”, Prof. Chen explained why they developed this new technology.

“Another important advantage of our gene therapy approach is that after overexpressing neural transcription factor(s) such as NeuroD1 or other transcription factors into glioma cells, the glioma cells stop proliferation immediately before being converted into neurons. Therefore, this transcription factor-based gene therapy may provide a new strategy to prolong the time window of treatment by arresting rapid proliferation of malignant glioma cells,” added Dr. Xin Wang, the first author of this work.

While excited about their new findings, Prof. Chen and colleagues also acknowledge that this new technology of treating glioma with transcription factor-based gene therapy is still in its infant stage. Many technical issues still need to be considered, such as developing a safe viral delivery system, targeting glioma cells in a specific way, and potential side effects induced by neural transcription factors. They also plan to combine their cell conversion therapy together with other interventions to achieve synergistic effects to treat glioma.

###

In addition to Prof. Chen and Dr. Wang, other contributors to this work include Dr. Zifei Pei, Aasma Hossain, and Yuting Bai from Penn State. This work was supported by the Charles H. “Skip” Smith Endowment Fund to Prof. Chen.

Media Contact
Qingsong Wang
[email protected]

Original Source

http://www.cancerbiomed.org/index.php/cocr/article/view/1823/1767

Related Journal Article

http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0499

Tags: cancerCell BiologyGene TherapyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

How the Brain Integrates Multimodal Cues for Direction

How the Brain Integrates Multimodal Cues for Direction

August 3, 2025
blank

LONP1 Controls Mitochondrial Folding, Impacts Diabetes

August 3, 2025

Astrocyte Fate in Mouse Septum Driven by Origins, Signals

August 3, 2025

AI Predicts Sinus Surgery Outcomes from Images

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    47 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Advances and Challenges in Inverse Lithography

How the Brain Integrates Multimodal Cues for Direction

Zinc Finger Protein 683 Predicts Kidney Cancer Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.