• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Neural networks need more than neurons, new project posits

Bioengineer by Bioengineer
March 4, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Vincent Breton-Provencher/MIT Picower Institute

By encoding a feature of biological intelligence called reinforcement learning, in which we iteratively learn from successes and failures, “deep neural networks” (DNNs) have revolutionized artificial intelligence with spectacular demonstrations of mastery in Chess and Go. But they struggle to deal with the real-world problems encountered daily by humans and other animals. A new collaboration based at MIT posits that a fundamental shortcoming of deep neural networks is that they are merely neural. The team aims to prove DNNs could become much more powerful by integrating another brain cell type: astrocytes.

“Too much emphasis on neurons has removed any analysis of the role of these cells that are 50 percent of brain cells,” said Mriganka Sur, Newton Professor of Neuroscience in The Picower Institute for Learning and Memory at MIT and leader of the project funded by the U.S. Army with up to $6.5 million over five years via a Multidiscipinary University Research Initiative grant. The team includes four faculty members in MIT’s Departments of Brain and Cognitive Sciences (BCS) and Electrical Engineering and Computer Science (EECS), as well as professors at California Institute of Technology and the University of Minnesota.

Given games where the rules and context never vary, time is irrelevant, and all the information about the state of the game is always apparent on the board, current state-of-the-art DNNs can remain woefully inefficient or outright oblivious to all kinds of factors that people and animals routinely must consider, Sur said. These include how to balance exploring an uncertain situation with exploiting it to advance toward the goal; how to keep track over time of which steps eventually prove crucial for success; and how to extract and transfer knowledge of those key steps for application in unexpected but related contexts.

There is growing evidence, Sur said, that astrocytes endow biological brains with these capabilities by acting as a parallel network overlaying that of neurons. The computational refinements this brings include integrating information over long time scales, selectively modulating key connections between neurons called synapses, and providing an infrastructure in which key actions most closely associated with reward – even if it takes several more steps to achieve- can be recognized and repurposed. Astrocytes are key links in coordinating a process by which chemicals called neuromodulators guide neurons in the brain’s prefrontal cortex to carry out exploration and guide cells in the brain’s striatum to execute exploitation.

The collaboration will investigate the hypothesis that integrating astrocytes into DNNs can radically enhance their efficiency and performance. Collaborators Pulkit Agrawal, assistant professor in EECS, and Alexander Rakhlin, associate professor in BCS, will spearhead efforts to integrate astrocytes into reinforcement learning theory. John O’Doherty, professor of psychology at Caltech, will lead experiments to test theoretical predictions by monitoring brain imaging in humans as they breeze through tasks that confound current DNNs. Ann Graybiel, Institute Professor in BCS, will do so in mice, where she studies reinforcement learning and its roots in the striatum. Meanwhile Sur and Alfonoso Araque at Minnesota will measure how astrocytes work in brain circuits of mice as they learn, and even manipulate the cells to see how that changes reinforcement learning performance. Experimental results will then help refine the group’s theory.

For instance, humans will play a video game where they have to collect coins, but cannot do so without first finding a bucket. The bucket will frequently fill, requiring them to deposit collected coins in a bank before they can then gather more coins. People won’t take long to figure out how to recognize and navigate these shifting contexts, but a DNN should struggle mightily. Via such tasks, and simplified ones in mice, the team expects to see how brain regions and the astrocytes and neuromodulators within make key differences.

“Our central hypothesis is that interaction of astrocytes with neurons and neuromodulators is source of computational prowess that enables the brain to naturally perform reward learning and overcome many problems associated with state-of-the-art reinforcement learning (RL) systems,” the team wrote in their grant. “Astrocytes can integrate and modulate neuronal signals across diverse timescales ranging from synaptic activity to shifts in behavioral state and learning. Our project is a combined effort of advancing the theory for RL systems and advancing the neurobiology of astrocytic function, through a synergistic design of theory and experiments.”

###

Media Contact
David Orenstein
[email protected]

Original Source

https://picower.mit.edu/news/neural-networks-need-more-neurons-new-project-posits

Tags: Algorithms/ModelsCell BiologyComputer ScienceIntelligenceMemory/Cognitive ProcessesneurobiologyPhysiologyRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Hypoxia Improves Neurodegeneration, Movement in Parkinson’s Mice

August 6, 2025
Forensic Age Estimation in Southwestern Chinese Adolescents

Forensic Age Estimation in Southwestern Chinese Adolescents

August 6, 2025

Mexican Mental Health Pros on Tech for Substance Use

August 6, 2025

Pulmonary Embolism in Children: Prognosis and Factors

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stable 4.8V Cathodes via Supersaturated High-Valence Design

Hypoxia Improves Neurodegeneration, Movement in Parkinson’s Mice

Forensic Age Estimation in Southwestern Chinese Adolescents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.