• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Neural connection keeps instincts in check

Bioengineer by Bioengineer
January 9, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: EMBL/Livia Marrone

Monterotondo, 9 January 2016 – From fighting the urge to hit someone to resisting the temptation to run off stage instead of giving that public speech, we are often confronted with situations where we have to curb our instincts. Scientists at EMBL have traced exactly which neuronal projections prevent social animals like us from acting out such impulses. The study, published online today in Nature Neuroscience, could have implications for schizophrenia and mood disorders like depression.

"Instincts like fear and sex are important, but you don't want to be acting on them all the time," says Cornelius Gross, who led the work at EMBL. "We need to be able to dynamically control our instinctive behaviours, depending on the situation."

The driver of our instincts is the brainstem – the region at the very base of your brain, just above the spinal chord. Scientists have known for some time that another brain region, the prefrontal cortex, plays a role in keeping those instincts in check [see box]. But exactly how the prefrontal cortex puts a break on the brainstem has remained unclear.

Now, Gross and colleagues have literally found the connection between prefrontal cortex and brainstem. The EMBL scientists teamed up with Tiago Branco's lab at MRC LMB, and traced connections between neurons in a mouse brain. They discovered that the prefrontal cortex makes prominent connections directly to the brainstem.

Gross and colleagues went on to confirm that this physical connection was the brake that inhibits instinctive behaviour. They found that in mice that have been repeatedly defeated by another mouse – the murine equivalent to being bullied – this connection weakens, and the mice act more scared. The scientists found that they could elicit those same fearful behaviours in mice that had never been bullied, simply by using drugs to block the connection between prefrontal cortex and brainstem.

These findings provide an anatomical explanation for why it's much easier to stop yourself from hitting someone than it is to stop yourself from feeling aggressive. The scientists found that the connection from the prefrontal cortex is to a very specific region of the brainstem, called the PAG, which is responsible for the acting out of our instincts. However, it doesn't affect the hypothalamus, the region that controls feelings and emotions. So the prefrontal cortex keeps behaviour in check, but doesn't affect the underlying instinctive feeling: it stops you from running off-stage, but doesn't abate the butterflies in your stomach.

The work has implications for schizophrenia and mood disorders such as depression, which have been linked to problems with prefrontal cortex function and maturation.

"One fascinating implication we're looking at now is that we know the pre-frontal cortex matures during adolescence. Kids are really bad at inhibiting their instincts; they don't have this control," says Gross, "so we're trying to figure out how this inhibition comes about, especially as many mental illnesses like mood disorders are typically adult-onset."

Tiago Branco is now at the Sainsbury Wellcome Centre.

Background information: from metal rods to Pac-man

Neuroscience textbooks have long carried the story of Phineas Gage. In 1848, while he was packing explosives into a rock to clear the way for a railroad, a premature explosion shot a metal rod through Gage's head. Remarkably, he survived. But his personality appears to have changed – although accounts and interpretations vary over what exactly the changes were, and how long they lasted. Nevertheless, Gage's case was instrumental in proving that there was a connection between brain and personality. Exactly which parts of Gage's brain were damaged has also been the subject of intense debate. The frontal lobes of his brain were certainly affected, and computer-based reconstructions of Gage's injury, as well as studies of other patients – injured in accidents or by stroke – have pointed to the prefrontal cortex as a likely seat for our inhibitions.

A study of people trying to avoid injury – albeit in a simulated environment – hinted at how that inhibition might come about. Looking at the brains of people as they played a Pac-man-like game in an MRI scanner, scientists found that while players were 'running away' from 'Pac-man', their pre-frontal cortex was active, but in the moments just before their character was eaten, players' pre-frontal cortex would shut down and a region of the brainstem called the PAG became active. This study suggested a link between those two brain regions, and inspired Gross and colleagues to investigate.

###

Media Contact

Isabelle Kling
[email protected]
49-622-138-78355
@EMBLorg

http://www.embl.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Lung cancer screening

Nearly half of patients at high risk for lung cancer delayed screening follow-up

May 17, 2022
The subtropical North Atlantic

Deep ocean warming as climate changes

May 17, 2022

For large bone injuries, it’s Sonic hedgehog to the rescue

May 17, 2022

New light on organic solar cells

May 17, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsVehiclesVaccineUrbanizationUniversity of WashingtonViolence/CriminalsVirologyVaccinesZoology/Veterinary ScienceUrogenital SystemVirusWeaponry

Recent Posts

  • Nearly half of patients at high risk for lung cancer delayed screening follow-up
  • Deep ocean warming as climate changes
  • For large bone injuries, it’s Sonic hedgehog to the rescue
  • New light on organic solar cells
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....