• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nerve study shows how cells adapt to help repair damage

Bioengineer by Bioengineer
October 5, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Genetic processes that allow cells to transform so they can mend damaged nerves have been identified by scientists.

Their insights on tissue repair could advance the search for drug therapies to improve regeneration after injury, experts say.

Researchers focused on injury to cells in the peripheral nervous system (PNS) – the crucial network of nerves outside the brain and spinal cord.

The study could inform new treatments for a set of conditions known as peripheral neuropathies, which are caused by damage to the cells in the PNS and can lead to extreme sensitivity to touch as well as numbness and muscle weakness.

Scientists identified molecules that potentially allow nerve-supporting cells – known as Schwann cells – to transform into a specialised version that enable them to help nerves regenerate.

As well as identifying vital genes that orchestrate this transformation, the scientists discovered molecular markers that flag these Schwann cells as specialist repairers.

Genes identified by the research team – led by the Universities of Edinburgh, Cambridge and University College London – were also found to be similar to those seen in tumour formation, which could shed light on cell growth in cancers.

Peripheral neuropathy affects around one in 10 people in the UK aged over 55 and can have a severe impact on quality of life, leaving some people paralysed.

Prof Timothy Aitman, Director of the University of Edinburgh's Centre for Genomic and Experimental Medicine, who co-led the study, said: "Our findings give us insight into how cells in the body adapts to injury. This knowledge will help identify drug targets for much-needed therapies to help patients with peripheral neuropathy and traumatic nerve injuries."

Dr Peter Arthur-Farraj, Wellcome Trust Clinical Fellow at the University of Cambridge, who co-led the study, said: "We have shown that a number of genes expressed by repair Schwann cells are similar to genes involved in the processes that lead to a number of cancers. This suggests that molecular mechanisms that have evolved to promote tissue repair are closely related to those involved in tumour formation, which could help us understand cancers."

###

The study was published in the journal Cell Reports and was carried out in collaboration with Imperial College London. It was funded by the Medical Research Council and the Wellcome Trust.

Media Contact

Kate McAllister
[email protected]
0044-131-650-6357
@edinunimedia

http://www.ed.ac.uk

http://www.ed.ac.uk/news/2017/nerve-study-shows-how-cells-repair

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2017.08.064

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

November 5, 2025
blank

Evaluating PR1 Genes in Mung Bean’s Pathogen Response

November 5, 2025

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Unveiling Europe’s Key Players in Regenerative Agriculture

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.