• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Nerve cells let others “listen in”

Bioengineer by Bioengineer
September 25, 2020
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study by the University of Bonn: The signal transmission in the brain is more or less exclusive depending on the situation

IMAGE

Credit: (c) Michel Herde

How many “listeners” a nerve cell has in the brain is strictly regulated. This is shown by an international study led by the University College London and the universities of Bonn, Bordeaux and Milton Keynes (England). In the environment of learning neurons, certain processes are set in motion that make signal transmission less exclusive. The results have now been published in the journal Neuron.

If you want to share a secret with a friend in a busy environment, you may try to find a quiet spot, close the doors and shield the conversation from possible eavesdroppers. Nerve cells in the brain also communicate with each other behind closed doors. But the extent of this protection could be strictly regulated depending on the situation. The findings now presented by the international research team point in this direction.

The information transfer between neurons is mostly done chemically: In response to an electrical signal, the “transmitting cell” releases a so-called neurotransmitter at a synapse; this may often be glutamate molecules. These migrate through the synaptic cleft to the recipient cell. There, they dock to certain receptors and generate an electrical reaction in the receiving neuron.

But the nerve cells in the brain are packed very densely. There is therefore a danger that the molecules not only reach the neuron for which they are intended, but also stimulate other neurons in the neighborhood. This is where the “closed doors” come into play: Specialized cells in the brain, the astrocytes, rapidly reabsorb the glutamate. This way they shield communication to a certain extent. “They do this by sending extensions near synapses, the so-called perisynaptic astrocyte processes or PAPs,” explains Prof. Dr. Christian Henneberger from the Institute of Cellular Neurosciences at the University of Bonn.

Molecular glutamate vacuum cleaners

PAPs have specialized transporters that remove the glutamate around the synapses, like small vacuum cleaners. The effectiveness of this mechanism is apparently strictly regulated: The researchers triggered a kind of cellular learning through a repeated electrical stimulation. This causes the receiver cell to respond more strongly to the signals of the transmitting cell in the long term. Experts also speak of “long-term potentiation” (LTP).

“We have now been able to demonstrate that PAPs retreat during this learning process,” explains Prof. Dr. Dmitri Rusakov from the Institute of Neurology at University College London. “This increases the likelihood that neighboring cells are also stimulated by the glutamate release.” This means that signal transmission also becomes less exclusive, which could explain other interesting observations where the cause was previously unclear: For example, LTP can also affect close connections between other nerve cells. “This may be important for later learning processes,” Henneberger suspects.

Large synapses are less discreet

Some synapses also seem to be inherently less discreet than others. Together with his colleague Dr. Michel Herde and other researchers, Henneberger was able to show this in a study published a few days ago in “Cell Reports“. The transmitter cell often releases its glutamate into the synaptic cleft at certain structures, the so-called spines. These are tiny extensions of the downstream receiving nerve cell. The PAPs often cover these spines almost like a glove. However, the larger a spine is, the patchier is this coating and the more glutamate can escape. “In the vicinity of large and strong synapses, other nerve cells are therefore probably excited more frequently,” says Herde. In other words: Nerve cells with strong synaptic connections rarely speak behind closed doors.

###

Publications:

Christian Henneberger, Lucie Bard, Aude Panatier, James P. Reynolds, Olga Kopach, Nikolay I. Medvedev, Daniel Minge, Michel K. Herde, Stefanie Anders, Igor Kraev, Janosch P. Heller, Sylvain Rama, Kaiyu Zheng, Thomas P. Jensen, Inmaculada Sanchez-Romero, Colin Jackson, Harald Janovjak, Ole Petter Ottersen, Erlend Arnulf Nagelhus, Stephane H.R. Oliet, Michael G. Stewart, U. Valentin Nägerl and Dmitri A. Rusakov: LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia; Neuron; DOI: https://doi.org/10.1016/j.neuron.2020.08.030

Michel K. Herde, Kirsten Bohmbach, Cátia Domingos, Natascha Vana, Joanna A. Komorowska-Müller, Stefan Passlick, Inna Schwarz, Colin J. Jackson, Dirk Dietrich, Martin K. Schwarz and Christian Henneberger: Local efficacy of glutamate uptake decreases with synapse size; Cell Reports; DOI: https://doi.org/10.1016/j.celrep.2020.108182

Contact:

Prof. Dr. Christian Henneberger

Institut für zelluläre Neurowissenschaften der Universität Bonn

Tel. +49 (0)228/287-16304

E-mail: [email protected]

Media Contact
Christian Henneberger
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2020.08.030

Tags: Medicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Rewrite Organic-inorganic covalent selenium reversing ischemic reperfusion injury as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Rewrite Nuclear PKM2: a signal receiver, a gene programmer, and a metabolic modulator as a headline for a science magazine post, using no more than 8 words

August 28, 2025

Boosting Graduate Seminar Engagement with Active Learning

August 28, 2025

Study Finds Lack of Strong Evidence Supporting Alternative Autism Treatments

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Recyclable luminescent solar concentrator from lead-free perovskite derivative as a headline for a science magazine post, using no more than 8 words

Rewrite Organic-inorganic covalent selenium reversing ischemic reperfusion injury as a headline for a science magazine post, using no more than 8 words

Rewrite Towards sustainable diets and farming systems through land use optimisation as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.