• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Near-field routing of hyperbolic metamaterials

Bioengineer by Bioengineer
June 14, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Flexible control of the propagating direction of near-field light can be realized with hyperbolic metamaterials, using an all-electric metasource

IMAGE

Credit: Z. Guo et al.

Near-field light is invisible light at the subwavelength scale. Harnessed for a variety of practical applications, such as wireless power transfer, near-field light has an increasingly significant role in the development of miniature on-chip photonic devices. Controlling the direction of near-field light propagation has been an ongoing challenge that is of fundamental interest in photonics physics and can significantly advance a variety of applications.

So far, propagation of near-field light in a single direction is achieved by specific interactions between the electric dipole and the magnetic dipole in a system, which has led to inevitable complexities in device design. Hyperbolic metamaterials (HMMs), an important class of artificial anisotropic material with hyperbolic isofrequency contours, have attracted attention due to their unique ability to control near-field light by enabling subwavelength confinement of electromagnetic waves. Large wave-vector modes in HMMs are of particular interest because those modes are easier to integrate and have a smaller loss of energy at transfer.

As reported in Advanced Photonics, researchers from Tongji University in China recently demonstrated an all-electric scheme able to flexibly control the propagation direction of near-field light. They reported anomalous unidirectional excitation of hyperbolic modes with large wave-vector at subwavelength scales. According to their research, selective near-field coupling in HMMs is enabled by discrete electric dipoles with different phases, which serve as a metasource composed of all-electric components and with a symmetry-associated inner freedom.

Their research not only addresses the need for an all-electric experimental design scheme for near-field photonics, but also contributes fundamentally valuable symmetry-based excitation principles. Using a Huygens metasource, the researchers were able to observe the unidirectional excitation of hyperbolic bulk modes in a planar HMM. They found that unidirectional excitation in free space is the same as in the vertical direction, but opposite to that in the horizontal direction. These different propagation characteristics in horizontal and vertical directions are unique to the hyperbolic modes. In addition, the researchers used spin metasources to study the directional propagation of light in a planar hyperbolic waveguide. They found that, for the clockwise-rotating spin metasource, only the guided mode propagating from right to left is excited. And for the counterclockwise-rotating source, only the guided mode propagating from left to right is excited.

Overall, the research advances the fields of optical science and information communication, as the results provide the necessary conditions for highly efficient and experimentally verified photonics routing. For emerging applications in integrated optical devices, as well as wireless power transfer, switching, and filtering, this work promises unprecedented flexible control of near-field light.

###

Read the open access research article by Zhiwei Guo et al., “Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources,” Adv. Photon. 3(3), 036001 (2021), doi 10.1117/1.AP.3.3.036001.

Media Contact
Daneet Steffens
[email protected]

Original Source

https://spie.org/news/near-field-routing-of-hyperbolic-metamaterials?SSO=1

Related Journal Article

http://dx.doi.org/10.1117/1.AP.3.3.036001

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsOpticsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Imaging and Surgery of Retroperitoneal Vascular Leiomyosarcoma

Imaging and Surgery of Retroperitoneal Vascular Leiomyosarcoma

August 3, 2025
blank

Low-Cost Liquid Optical Waveguide Boosts Augmented Reality

August 3, 2025

Predicting Colorectal Cancer Using Lifestyle Factors

August 3, 2025

Optical Matrix Multipliers Revolutionize Image Encoding and Decoding

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Imaging and Surgery of Retroperitoneal Vascular Leiomyosarcoma

Low-Cost Liquid Optical Waveguide Boosts Augmented Reality

Predicting Colorectal Cancer Using Lifestyle Factors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.