• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

NCCR MARVEL team wins award for ground-breaking work on 2D materials

Bioengineer by Bioengineer
June 21, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Investigations into a fascinating class of novel materials that could underpin next-generation electronic and optoelectronic applications and quantum computing has won a team led by Nicola Marzari the inaugural PRACE (Partnership for Advanced Computing in Europe) HPC Excellence Award. It was established to honor “the most distinguished projects and researchers in the field of high-performance computing.” 

Cover of Nature Nanotechnology

Credit: Nature Nanotechnology

Investigations into a fascinating class of novel materials that could underpin next-generation electronic and optoelectronic applications and quantum computing has won a team led by Nicola Marzari the inaugural PRACE (Partnership for Advanced Computing in Europe) HPC Excellence Award. It was established to honor “the most distinguished projects and researchers in the field of high-performance computing.” 

The award-winning research was originally described in the 2018 Nature Nanotechnology article “Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds,” whose goal was to accelerate materials discovery: while Nobel-prize winning work producing and characterizing graphene had moved 2D materials from theory to reality some 15 years prior, progress in identifying novel 2D materials was slow — only a few had been identified experimentally. 

While it was clear that a computational approach could help tackle the challenge of identifying which of the hundreds of thousands of known compounds could actually be exfoliated or be stable as 2D monolayers, fundamental issues remained. How could they establish whether or not a crystal structure could be exfoliated? How should they treat and eventually perform simulations over an extensive set of candidate materials? How could they streamline predictions so that they would more reliably and automatically go from structure to property?  

Marzari and his team answered all these questions with a data and computing intensive approach, managing to narrow a down a field of 108,423 unique, experimentally known inorganic compounds to just under 2000 that could be exfoliated into novel 2D materials. They then investigated the vibrational, electronic, magnetic and topological properties of a subset of the most interesting 258 compounds, identifying novel magnetic materials, half-metals, and half-semiconductors. The richness of this portfolio was then explored in more than a dozen additional studies, screening for optimal performance in different applications, from electronic transport, to superconductivity, to band topology. This led to the discovery of the first ever Kane-Mele topological insulator, to the material with largest superconducting temperature in 2D, and the most performant spin-FET transistor.   

None of this would have been possible without a novel approach to computing and data. The original high-throughput study required the team to perform half a million calculations on thousands of different materials, often combining multiple codes to target complex properties. Doing this by hand not only would have required an enormous effort and considerable human power, but would have made it prone to errors and not reproducible. 

This challenge drove the team to approach HPC in a radically new way, figuring out how to deal with these calculations automatically, robustly, and reliably, while preserving a fully reproducible record of the entire calculation protocols and workflows. The development of the core informatics platform of MARVEL was key: AiiDA (https://www.aiida.net) as the infrastructure to automate, manage, persist, share and reproduce all the complex workflows and data, and the Materials Cloud (https://www.materialscloud.org/discover/mc2d) to disseminate those to the community at large. AiiDA is able to handle simultaneously thousands of calculations, automating the submission and control process as well as the retrieval and storage of the results, and one can then expose the entire workflow and the raw and curated data on the Materials Cloud.

Notably, the team that will share the award — all of whom were at EPFL when the work was done — has now moved on to independent positions worldwide: Nicolas Mounet, research scientist at CERN; Marco Gibertini, assistant professor at University of Modena and Reggio Emilia; Philippe Schwaller, assistant professor at EPFL, Davide Campi, assistant professor at University of Milano-Bicocca; Andrius Merkys, researcher at Vilnius University; Antimo Marrazzo, junior assistant professor at University of Trieste; Thibault Sohier, researcher at CNRS, Laboratoire Charles Coulomb; Ivano E. Castelli, associate professor at Technical University of Denmark; Andrea Cepellotti, research scientist at Harvard University;  Giovanni Pizzi, senior scientist at EPFL and group leader at PSI, and Nicola Marzari at EPFL. And of course they are all very grateful to the Swiss National Supercomputing Centre and to PRACE for providing the support and computing resources that underpinned all the research.

The prize will be presented at PASC22, held from the 27 to the 29 of June 2022 in Basel, Switzerland.



DOI

10.1038/s41565-017-0035-5

Share12Tweet7Share2ShareShareShare1

Related Posts

Illustration compares the traditional method of ethylbenzene dehydrogenation with the new method.

New styrene production method improves stability, dehydrogenation activity

July 7, 2022
VX detecting protein

Ronald Koder-led CCNY team creates first ever VX neurotoxin detector

July 6, 2022

UTA selects Kate C. Miller as new VP for research and innovation

July 6, 2022

Upside-down design expands wide-spectrum super-camera abilities

July 6, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyVirusViolence/CriminalsWeather/StormsUrogenital SystemUrbanizationVaccinesVaccineWeaponryUniversity of WashingtonVehiclesZoology/Veterinary Science

Recent Posts

  • Electric vehicle buyers want rebates, not tax credits
  • The key is in the coating: Multilayered coating to improve the corrosion resistance of steel
  • A new method developed by researchers from the Josep Carreras Institute predicts childhood hyperdiploid B-ALL relapse risk
  • ORNL’s Wagner, Curran elevated to Senior Members of IEEE
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....