• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

NASA’s Interstellar Mapping and Acceleration Probe passes system integration review

Bioengineer by Bioengineer
September 25, 2023
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Interstellar Mapping and Acceleration Probe (IMAP) marked the completion of an important step on the path to spacecraft assembly, test, and launch operations this week at Johns Hopkins Applied Physics Laboratory (APL) in Maryland.

IMAP Illustration

Credit: NASA/Princeton/Johns Hopkins APL/Josh Diaz

The Interstellar Mapping and Acceleration Probe (IMAP) marked the completion of an important step on the path to spacecraft assembly, test, and launch operations this week at Johns Hopkins Applied Physics Laboratory (APL) in Maryland.

The IMAP team met with a review panel to evaluate the plan for integrating all systems onto the spacecraft, such as the scientific instrumentation, electrical and communication systems, and navigation systems. Successful completion of this System Integration Review (SIR) means that the project can proceed with assembling and testing the spacecraft in preparation for launch. This process is a bit like a carefully choregraphed dance where the instruments and support systems are delivered to different facilities, tested together in chambers in Los Alamos, New Mexico; San Antonio, Texas; and Princeton, New Jersey; and shipped back to be integrated and tested again altogether.

On Friday, Sept. 15, 2023, the chair of the Standing Review Board announced that the IMAP project successfully passed the SIR requirements to proceed to integration and test.

“I am incredibly proud of the entire IMAP team for everyone’s hard work and determination in getting us to and through this critical milestone,” said David McComas, IMAP mission principal investigator and Princeton University professor. “We are now moving on to spacecraft integration and test, where all of the individual subsystems and instruments merge together to create our full IMAP observatory.”

The IMAP mission, which will be ready to launch in 2025, will explore our solar neighborhood, decoding the messages in particles from the Sun and beyond our cosmic shield. The mission will map the boundaries of the heliosphere – the electromagnetic bubble surrounding the Sun and planets that is inflated by the solar wind.

David McComas leads the mission with an international team of more than 20 partner institutions. APL is managing the development phase, building the spacecraft, and will operate the mission. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes (STP) Program portfolio. The Explorers and Heliophysics Projects Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the STP Program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate.

For more information about IMAP visit: https://imap.princeton.edu

 



Share12Tweet8Share2ShareShareShare2

Related Posts

Fig. 1. Four types of aircraft exhaust particles and their typical number fractions at engine exit and 15 m downstream.

Onion-Like Nanoparticles Discovered in Aircraft Exhaust Emissions

May 14, 2025
Artistic representation of CO2 capture from a moisture-laden gas stream using CALF-20, a zinc-based metal-organic framework.

Decoding Carbon Capture: How Nature and Technology Trap Carbon

May 13, 2025

Carbon Dioxide Enables Controlled Anionic Polymerization

May 13, 2025

Groundbreaking Study Maps Biochar’s Global Role in ESG and Climate Solutions

May 13, 2025

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    88 shares
    Share 35 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    73 shares
    Share 29 Tweet 18
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shift Lengths Affect Neonatologists’ Sleep, Fatigue, Wellness

Walking Speed Linked to Risk of 28 Cancers

Onion-Like Nanoparticles Discovered in Aircraft Exhaust Emissions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.