• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NASA to demonstrate laser communications from space station

Bioengineer by Bioengineer
August 30, 2023
in Biology
Reading Time: 3 mins read
0
NASA's ILLUMA-T payload in a Goddard cleanroom.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NASA uses the International Space Station — a football field-sized spacecraft orbiting Earth — to learn more about living and working in space. For over 20 years, the space station has provided a unique platform for investigation and research in areas like biology, technology, agriculture, and more. It serves as a home for astronauts conducting experiments, including advancing NASA’s space communications capabilities. 

NASA's ILLUMA-T payload in a Goddard cleanroom.

Credit: Credit: Dennis Henry

NASA uses the International Space Station — a football field-sized spacecraft orbiting Earth — to learn more about living and working in space. For over 20 years, the space station has provided a unique platform for investigation and research in areas like biology, technology, agriculture, and more. It serves as a home for astronauts conducting experiments, including advancing NASA’s space communications capabilities. 

In 2023, NASA is sending a technology demonstration known as the Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) to the space station. Together, ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), which launched in December 2021, will complete NASA’s first two-way, end-to-end laser relay system.

With ILLUMA-T, NASA’s Space Communications and Navigation (SCaN) program office will demonstrate the power of laser communications from the space station. Using invisible infrared light, laser communications systems send and receive information at higher data rates. With higher data rates, missions can send more images and videos back to Earth in a single transmission. Once installed on the space station, ILLUMA-T will showcase the benefits higher data rates could have for missions in low Earth orbit.

“Laser communications offer missions more flexibility and an expedited way to get data back from space,” said Badri Younes, former deputy associate administrator for NASA’s SCaN program. “We are integrating this technology on demonstrations near Earth, at the Moon, and in deep space.”

In addition to higher data rates, laser systems are lighter and use less power — a key benefit when designing spacecraft. ILLUMA-T is approximately the size of a standard refrigerator and will be secured to an external module on the space station to conduct its demonstration with LCRD.

Currently, LCRD is showcasing the benefits of a laser relay in geosynchronous orbit – 22,000 miles from Earth – by beaming data between two ground stations and conducting experiments to further refine NASA’s laser capabilities.

“Once ILLUMA-T is on the space station, the terminal will send high-resolution data, including pictures and videos to LCRD at a rate of 1.2 gigabits-per-second,” said Matt Magsamen, deputy project manager for ILLUMA-T. “Then, the data will be sent from LCRD to ground stations in Hawaii and California. This demonstration will show how laser communications can benefit missions in low Earth orbit.”

ILLUMA-T is launching as a payload on SpaceX’s 29th Commercial Resupply Services mission for NASA. In the first two weeks after its launch, ILLUMA-T will be removed from the Dragon spacecraft’s trunk for installation on the station’s Japanese Experiment Module-Exposed Facility (JEM-EF), also known as “Kibo” — meaning “hope” in Japanese.

Following the payload’s installation, the ILLUMA-T team will perform preliminary testing and in-orbit checkouts. Once completed, the team will make a pass for the payload’s first light — a critical milestone where the mission transmits its first beam of laser light through its optical telescope to LCRD.

Once first light is achieved, data transmission and laser communications experiments will begin and continue throughout the duration of the planned mission.

Testing Lasers in Different Scenarios

In the future, operational laser communications will supplement radio frequency systems, which most space-based missions use today to send data home. ILLUMA-T is not the first mission to test laser communications in space but brings NASA closer to operational infusion of the technology.

Aside from LCRD, ILLUMA-T’s predecessors include the 2022 TeraByte InfraRed Delivery system, which is currently testing laser communications on a small CubeSat in low Earth orbit; the Lunar Laser Communications Demonstration, which transferred data to and from lunar orbit to the Earth and back during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; and the 2017 Optical Payload for Lasercomm Science, which demonstrated how laser communications can speed up the flow of information between Earth and space compared to radio signals.  

Testing the ability for laser communications to produce higher data rates in a variety of scenarios will help the aerospace community further refine the capability for future missions to the Moon, Mars, and deep space.


The ILLUMA-T payload is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Partners include the International Space Station program office at NASA’s Johnson Space Center in Houston and the Massachusetts Institute of Technology Lincoln Laboratory. ILLUMA-T is funded by the Space Communications and Navigation (SCaN) program at NASA Headquarters in Washington.



Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Reveals Need for More High-Quality Habitats to Support Insect Pollinators and Boost Farming

New Study Reveals Need for More High-Quality Habitats to Support Insect Pollinators and Boost Farming

September 25, 2025
blank

Color-changing strategies enhance prey protection according to environmental conditions

September 25, 2025

Tracing Legacy: New Study Reveals How Longevity Passes Through Generations

September 25, 2025

Tracing a Century of Antibiotic Resistance Evolution

September 25, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    76 shares
    Share 30 Tweet 19
  • Physicists Develop Visible Time Crystal for the First Time

    71 shares
    Share 28 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    53 shares
    Share 21 Tweet 13
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI System Harnesses Diverse Scientific Data and Conducts Experiments to Uncover New Materials

New Publication Offers Blueprint for Creating Human-Centric AI Systems

Increase in Hospice and Palliative Care Consultations Observed in Emergency Departments

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.