• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NASA team takes on a new optical challenge — the Lyman Alpha Limit

Bioengineer by Bioengineer
May 30, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credits: NASA/W.Hrybyk

NASA technologists produced telescope mirrors with the highest reflectance ever reported in the far-ultraviolet spectral range. Now, they're attempting to set another record.

Manuel Quijada and his team, optical experts at NASA's Goddard Space Flight Center in Greenbelt, Maryland, are investigating techniques for creating highly reflective aluminum mirrors sensitive to the infrared, optical, and far-ultraviolet wavelength bands — a broad spectral range envisioned for proposed space telescopes after the James Webb Space Telescope and Wide Field Infrared Survey Telescope. These proposed missions would tackle a broad range of astrophysics studies, from the epoch of reionization, through galaxy formation and evolution, to star and planet formation.

Quijada's team specifically is studying three different techniques and materials for creating and applying protective coatings on aluminum mirrors to prevent them from oxidizing when exposed to oxygen and losing their reflectivity.

"Aluminum is a metal that nature has given us the broadest spectral coverage," Quijada said. "However, aluminum needs to be protected from naturally occurring oxides with a thin film or substrate of transparent material."

Unfortunately, no one has developed a coating that effectively protects and maintains a mirror's high reflectivity in the 90- to 130-nanometer range, also known as the Lyman Alpha range. At this spectral regime, scientists can observe a rich assortment of spectral lines and astronomical targets, including potentially habitable planets beyond our solar system. "The low reflectivity of coatings in this range is one of the biggest constraints in far-ultraviolet telescope and spectrograph design," Quijada said.

Ultraviolet light, which is shorter than that of visible light but longer than X-rays, is invisible to the human eye. Only with instruments tuned to this wavelength can objects be observed.

One of the recent NASA missions fully dedicated to far-ultraviolet observations was the Far Ultraviolet Spectroscopic Explorer, or FUSE, which was decommissioned in 2007 after a successful prime mission. Although it acquired 6,000 observations of nearly 3,000 separate astronomical objects over its eight years in orbit, FUSE's lithium fluoride substrate coating was not stable enough and began to degrade with time, Quijada said.

Quijada's goal is to develop a coating and process that not only improves reflectance in the far ultraviolet, but also allows observations in the other wavelength bands.

"Traditional coating processes have not allowed the use of aluminum mirrors to their full potential," Quijada said. "The new coatings we're investigating would enable a telescope covering a very broad spectral range, from the far ultraviolet to the near-infrared in one single observatory. NASA would get more bang for the buck."

Under one coating approach, the team would use physical vapor deposition to apply a thin layer of xenon difluoride gas to an aluminum sample. According to Quijada, studies have shown that the treatment of xenon difluoride creates fluorine ions that tightly bind to the aluminum surface, preventing further oxidation.

He also is investigating the use of two other thin-film deposition techniques — ion-assisted physical vapor deposition and atomic layer deposition — to apply thin films of aluminum trifluoride, which is environmentally stable compared with other coatings.

Quijada and his team already have succeeded in developing a coating for another region of the ultraviolet spectral band.

In 2016, a validation test proved that a protective coating that the team devised provided 90 percent reflectance in the 133.6-154.5 nanometer range — the highest reflectance ever reported for this ultraviolet band. To achieve this unprecedented level of performance, the team developed a three-step physical vapor deposition process to coat aluminum mirrors with protective magnesium fluoride or lithium fluoride films.

These high-reflectance coatings are now enabling new types of instruments, Quijada said. Two new heliophysics missions that will study the interactions between Earth's ionosphere and solar winds — the Ionospheric Connection Explorer and the Global-scale Observations of the Limb and Disk –will employ this coating technology.

"We need to push further down in the ultraviolet spectrum," Quijada said, referring to the targeted far-ultraviolet spectral range. "We need to get access to the whole ultraviolet to infrared range. We are blazing a trail in mirror coatings."

###

For more technology news, go to https://gsfctechnology.gsfc.nasa.gov/newsletter/Current.pdf

Media Contact

Rob Gutro
[email protected]
@NASAGoddard

http://www.nasa.gov/goddard

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Combination Inhaler Cuts Childhood Asthma Attacks by Nearly 50%

September 28, 2025

Unlocking Sustainable Lipids from Gongronella butleri

September 28, 2025

Nickel-Doped α-Bi2O3 Boosts Biomass Carbon Supercapacitors

September 28, 2025

Genome Study Reveals Pediococcus Genes Tied to Beer Spoilage

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    83 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Combination Inhaler Cuts Childhood Asthma Attacks by Nearly 50%

Unlocking Sustainable Lipids from Gongronella butleri

Nickel-Doped α-Bi2O3 Boosts Biomass Carbon Supercapacitors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.