• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NASA-funded sounding rocket will take 1,500 images of sun in 5 minutes

Bioengineer by Bioengineer
May 4, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Amir Caspi, Southwest Research Institute

On May 5, 2017, scientists will launch a sounding rocket 200 miles up into the atmosphere, where in just five minutes, it will take 1,500 images of the sun. The NASA-funded RAISE mission is designed to scrutinize split-second changes occurring near the sun's active regions — areas of intense, complex magnetic activity that can give rise to solar flares, which eject energy and solar material out into space.

Several missions continuously study the sun — such as NASA's Solar Dynamics Observatory, or SDO, and the Solar Terrestrial Relations Observatory, or STEREO — but certain areas of the sun demand especially high-cadence observations in order to understand the rapid changes occurring there. That's where RAISE — short for Rapid Acquisition Imaging Spectrograph Experiment — comes in.

"Dynamic processes happen on all timescales," said Don Hassler, principal investigator for the RAISE mission at the Southwest Research Institute in Boulder, Colorado. "With RAISE, we'll read out an image every two-tenths of a second, so we can study very fast processes and changes on the sun. That's around five to 10 times faster than comparable instruments on other sounding rocket or satellite missions."

RAISE images are used to create a data product called a spectrogram, which separates light from the sun into all its different wavelength components. By looking at the intensity of light at each wavelength, scientists can assess how solar material and energy moves around the sun, and how that movement evolves into massive solar eruptions.

"RAISE is pushing the limits of high-cadence observations, and doing so is challenging," Hassler said. "But that's exactly what the NASA sounding rocket program is for."

The flight of a sounding rocket is short-lived, and has a parabolic trajectory — the shape of a frown. Most sounding rocket flights last for 15 to 20 minutes, and just five to six of those minutes are spent making observations from above the atmosphere, observations that can only be done in space. In RAISE's case, the extreme ultraviolet light the instruments observe can't penetrate Earth's atmosphere. After the flight, the payload parachutes to the ground, where it can be recovered for use again.

This will be the RAISE mission's third flight, and the scientists have continuously updated its technology. For the upcoming flight, they have refurbished the detectors and updated the flight software, and the payload carries a new diffraction grating, which reflects light and separates it into its separate wavelengths.

The launch window for RAISE opens at 2:25 p.m. EDT at the White Sands Missile Range near Las Cruces, New Mexico. The precise timing of the launch depends on weather conditions, and coordinated timing with other space observatories such as NASA's SDO and IRIS, as well as the joint Japan Aerospace Exploration Agency/NASA's Hinode.

###

RAISE is supported by NASA's Sounding Rocket Program at NASA's Wallops Flight Facility in Virginia. NASA's Heliophysics Division manages the Sounding Rocket Program.

Media Contact

Lina Tran
[email protected]
@NASAGoddard

http://www.nasa.gov/goddard

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Assessing Nursing Care Plan Writing: Validity Study

November 2, 2025
Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025

Key Factors Influencing Colorectal Cancer Survival

November 2, 2025

Exploring Electronic Properties of Benzoic Acid-Enhanced Graphene Oxide

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Nursing Care Plan Writing: Validity Study

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Key Factors Influencing Colorectal Cancer Survival

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.