• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanoengineered cement shows promise for sealing leaky gas wells

Bioengineer by Bioengineer
December 14, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pa Department of Environmental Protection

Leaking natural gas wells are considered a potential source of methane emissions, and a new nanomaterial cement mixture could provide an effective, affordable solution for sealing these wells, according to a team of Penn State scientists.

“We have invented a very flexible cement that is more resistant to cracking,” said Arash Dahi Taleghani, associate professor of petroleum engineering at Penn State. “That’s important because there are millions of orphaned and abandoned wells around the world, and cracks in the casings can allow methane to escape into the environment.”

When natural gas wells are drilled, cement is used to secure the pipe, or casing, to the surrounding rock, creating a seal that prevents methane from migrating into the shallow subsurface, where it could enter waterways, or the atmosphere, where it is a potent greenhouse gas, the scientists said.

Wells can extend miles underground and over time changing temperatures and pressures can degrade the cement, causing cracks to form. The scientists said repairs involve injecting cement in very narrow areas between the casing and rock, requiring special cement.

“In construction, you may just mix cement and pour it, but to seal these wells you are cementing an area that has the thickness of less than a millimeter, or that of a piece of tape,” Dahi Taleghani said. “Being able to better pump cement through these very narrow spaces that methane molecules can escape from is the beauty of this work.”

Adding almost 2D graphite created a cement mixture that better filled these narrow spaces and that was also stronger and more resilient, the scientists found. They recently reported their findings in the International Journal of Greenhouse Gas Control. Maryam Tabatabaei, a postdoctoral scholar in the John and Willie Leone Family Department of Energy and Mineral Engineering, also contributed to this research.

The scientists developed a multi-step process to uniformly distribute sheets of the nanomaterial into a cement slurry. By treating the graphite first with chemicals, the scientists were able to change its surface properties so the material would dissolve in water instead of repelling it.

“If we just pour this material in the water and mix it, these small particles have a tendency to stick together and form a conglomerate,” Dahi Taleghani said. “If they are not dispersing evenly then the graphite is not as strong inside the cement.”

The cement mixture can be used in active unconventional wells like those found in the Marcellus Shale gas play, or to seal orphaned and abandoned gas wells, the scientists said. It also shows promise for use in carbon dioxide capture and storage technology.

Graphite is more affordable than other nanomaterials previously used to bolster cement performance. In addition, very little of the material is needed to strengthen the cement, the scientists said.

“Considering the low cost of the amount of graphite nanoplatelets required for this test, this technology may provide an economic solution for industry to address possible cementing problems in the field,” Dahi Taleghani said.

###

Media Contact
A’ndrea Elyse Messer
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.ijggc.2020.103187

Tags: Civil EngineeringEnergy SourcesMaterialsMechanical EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Methods for Generating Methanol Using Electricity and Biomass

Innovative Methods for Generating Methanol Using Electricity and Biomass

September 9, 2025
blank

Isotope Tafel Analysis Reveals Proton Transfer Kinetics

September 9, 2025

Gemini South Uncovers Elusive Cloud-Forming Chemical on Ancient Brown Dwarf

September 9, 2025

Physical Neural Networks: Pioneering Sustainable AI for the Future

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Blood Pumps: Customized Ventricular Assist Device Insights

Mayo Clinic Physician Honored with Dr. Scott C. Goodwin Grant for Advancing Adenomyosis Research

Indiana University and Instructure Secured NSF Funding to Launch TOPSAIL: A Groundbreaking Infrastructure for Evaluating AI Tools in Education

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.