• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Nano inks’ could passively control temperature in buildings, cars

Bioengineer by Bioengineer
March 27, 2023
in Chemistry
Reading Time: 3 mins read
0
Phase change inks
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

World-first ‘phase change inks’ that could transform how we heat and cool buildings, homes and cars – to achieve sophisticated ‘passive climate’ control – have been developed, with enormous potential to help reduce energy use and global greenhouse gas emissions.

Phase change inks

Credit: Dr Mohammad Taha, University of Melbourne

World-first ‘phase change inks’ that could transform how we heat and cool buildings, homes and cars – to achieve sophisticated ‘passive climate’ control – have been developed, with enormous potential to help reduce energy use and global greenhouse gas emissions.

New research published in The Royal Society of Chemistry’s Journal of Materials Chemistry A led by Dr Mohammad Taha, documents proof-of-concept ‘phase change inks’ that use nanotechnology to control temperature in everyday environments. They achieve this by adjusting the amount of radiation that can pass through them, based on the surrounding environment.

Dr Taha said these inks could be used to develop coatings to achieve passive heating and cooling, reducing our need to rely on energy creation to regulate temperatures.

“Humans use a lot of energy to create and maintain comfortable environments – heating and cooling our buildings, homes, cars and even our bodies,” Dr Taha said.

“We can no longer only focus on energy generation from renewable resources to reduce our environmental impact. We also need to consider reducing our energy consumption as part of our proposed energy solutions, as the impacts of climate change become a reality.

“By engineering our inks to respond to their surroundings, we not only reduce the energy expenditure, but we also remove the need for auxiliary control systems to control temperatures, which is an additional energy waste.”

Passive climate control would enable comfortable living conditions without expending energy unnecessarily. For example, to provide comfortable heating in winter, the inks applied on a building façade could automatically transform to allow greater sun radiation to pass through during the day, and greater insulation to keep warmth in at night. In summer, they could transform to form a barrier to block heat radiation from the sun and the surrounding environment.

The versatile ‘phase change inks’ are a proof-of-concept that can be laminated, sprayed or added to paints and building materials. They could also be incorporated into clothing, regulating body temperature in extreme environments, or in the creation of large-scale, flexible and wearable electronic devices like bendable circuits, cameras and detectors, and gas and temperature sensors.

Dr Taha said: “Our research removes the previous restrictions on applying these inks on a large scale cheaply. It means existing structures and building materials can be retrofitted. With manufacturing interest, the inks could reach market in five to 10 years.

“Through collaboration with industry, we can scale up and integrate them into existing and new technologies as part of a holistic approach to tackling the world’s climate change energy challenges.

“The potential of this material is huge as it can be used for so many different purposes – like preventing heat build-up in laptop electronics or on car windshields. But the beauty of this material is that we can adjust its heat absorption properties to suit our needs.

“Already, a different type of phase change material is used to manufacture smart glass, but our new material means we can engineer smarter bricks and paint. This new nanotechnology can help retrofit existing buildings to make them more efficient. It’s better for the environment and sustainable for the future.”

The breakthrough was achieved by discovering how to modify one of the main components of ‘phase change materials’ – vanadium oxide (VO2). Phase change materials use triggers, like heat or electricity, to create enough energy for the material to transform itself under stress. However, phase change materials previously needed to be heated to very high temperatures for their ‘phase changing’ properties to be activated.

“We used our understanding of how these materials are put together to test how we could trigger the insulator to metal (IMT) reaction, where the material basically acts as a switch to block heat beyond a particular temperature – near-room temperature (30-40oC),” Dr Taha said.

Dr Taha said the next step will involve taking the research, patented by the University of Melbourne, to production.



Journal

Materials Chemistry

DOI

10.1039/D2TA09753B

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Infrared modulation via near-room-temperature phase transitions of vanadium oxides & core–shell composites

Article Publication Date

21-Mar-2023

COI Statement

There are no conflicts to declare.

Share12Tweet8Share2ShareShareShare2

Related Posts

UZH Device Pioneers Search for Light Dark Matter

UZH Device Pioneers Search for Light Dark Matter

September 8, 2025
Unlocking Insulators: How Light Pulses Set Electrons Free

Unlocking Insulators: How Light Pulses Set Electrons Free

September 8, 2025

DGIST Validates Clinical Feasibility of Simultaneous Cell Isolation Technology to Enhance Cancer Diagnostic Accuracy

September 8, 2025

From Layered Transition Metal Oxide to 2D Material: Unveiling the Breakthrough Discovery of 2H-NbO₂

September 8, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.