• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mystery solved: a ‘New Kind of Electrons’

Bioengineer by Bioengineer
November 19, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Why do certain materials emit electrons with a very specific energy? This has been a mystery for decades – scientists at TU Wien have found an answer

IMAGE

Credit: TU Wien

It is something quite common in physics: electrons leave a certain material, they fly away and then they are measured. Some materials emit electrons, when they are irradiated with light. These electrons are then called “photoelectrons”. In materials research, so-called “Auger electrons” also play an important role – they can be emitted by atoms if an electron is first removed from one of the inner electron shells. But now scientists at TU Wien (Vienna) have succeeded in explaining a completely different type of electron emission, which can occur in carbon materials such as graphite. This electron emission had been known for about 50 years, but its cause was still unclear.

Strange electrons without explanation

“Many researchers have already wondered about this,” says Prof. Wolfgang Werner from the Institute of Applied Physics. “There are materials that consist of atomic layers that are held together only by weak Van der Waals forces, for example graphite. And it was discovered that this type of graphite emits very specific electrons, which all have exactly the same energy, namely 3.7 electron volts.”

No known physical mechanism could explain this electron emission. But at least the measured energy gave an indication of where to look: “If these atomically thin layers lie on top of each other, a certain electron state can form in between,” says Wolfgang Werner. “You can imagine it as an electron that is continuously reflected back and forth between the two layers until at some point it penetrates the layer and escapes to the outside.”

The energy of these states actually fits well with the observed data – so people assumed that there is some connection, but that alone was no explanation. “The electrons in these states should not actually reach the detector,” says Dr. Alessandra Bellissimo, one of the authors of the current publication. “In the language of quantum physics one would say: The transition probability is just too low.”

Skipping cords and symmetry

To change this, the internal symmetry of the electron states must be broken. “You can imagine this like rope skipping,” says Wolfgang Werner. “Two children hold a long rope and move the end points. Actually, both create a wave that would normally propagate from one side of the rope to the other. But if the system is symmetrical and both children behave the same way, then the rope just moves up and down. The wave maximum always remains at the same place. We don’t see any wave movement to the left or right, this is called a standing wave”. But if the symmetry is broken because, for example, one of the children moves backwards, the situation is different – then the dynamics of the rope changes and the maximum position of the oscillation moves.

Such symmetry breaks can also occur in the material. Electrons leave their place and start moving, leaving a “hole” behind. Such electron-hole pairs disturb the symmetry of the material, and thus it can happen that the electrons suddenly have the properties of two different states simultaneously. In this way, two advantages can be combined: On the one hand, there is a large number of such electrons, and on the other hand, their probability of reaching the detector is sufficiently high. In a perfectly symmetrical system, only one or the other would be possible. According to quantum mechanics, they can do both at the same time, because the symmetry refraction causes the two states to “merge” (hybridize).

“In a sense, it is teamwork between the electrons reflected back and forth between two layers of the material and the symmetry-breaking electrons,” says Prof. Florian Libisch from the Institute of Theoretical Physics. “Only when you look at them together can you explain that the material emits electrons of exactly this energy of 3.7 electron volts.”

Carbon materials such as the type of graphite analyzed in this research work play a major role today – for example, the 2D material graphene, but also carbon nanotubes of tiny diameter, which also have remarkable properties. “The effect should occur in very different materials – wherever thin layers are held together by weak Van der Waals forces,” says Wolfgang Werner. “In all these materials, this very special type of electron emission, which we can now explain for the first time, should play an important role”.

###

Contact

Prof. Wolfgang Werner

Institute for Applied Physics

TU Wien

+43 1 58801 13462

[email protected]

Media Contact
Florian Aigner
[email protected]

Original Source

https://www.tuwien.at/en/tu-wien/news/news-articles/news/old-mystery-solved-a-new-kind-of-electrons/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.125.196603

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decentralised Solar Boosts Reliability, Cuts Emissions, Saves Assets

Clarifying ECMO Weaning with Neurally Adjusted Ventilation

Study Reveals Effective Medications for Alcohol Withdrawal

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.