• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, January 21, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Mussel power: ONR researches underwater glue

Bioengineer by Bioengineer
November 3, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Photo provided by Dr. Bruce Lee)

ARLINGTON, Va.–Even the strongest glues collapse when soaked. Just watch a band-aid slide ungracefully off a finger or toe while in the shower. However, with support from the Office of Naval Research (ONR), one researcher has developed a nature-inspired adhesive that stays sticky when wet.

Dr. Bruce Lee, an assistant professor of biomedical engineering at Michigan Technological University, is using a protein produced by mussels to create a reversible synthetic glue that not only can bond securely underwater–but also may be turned on and off with electricity.

"Biomimetic approaches [synthetic methods that imitate natural processes] have been used previously to develop materials for wet adhesion," said Dr. Laura Kienker, manager of ONR's Biomaterials and Bionanotechnology Program. "The unique aspect of Dr. Lee's research is that it aims to develop a biomimetic wet adhesive that can rapidly and repeatedly bond to, and separate from, a variety of surfaces in response to applied electrical current. There are both non-medical and medical applications of such a material for the Navy and Marine Corps."

Like barnacles, mussels attach to rocks, docks and ship hulls–a natural occurrence called biofouling. Mussels secrete a combination of natural liquid superglues and stretchy fibers, called byssal threads, that works equally well in saltwater and freshwater; can stick to both hard and soft surfaces; and is strong enough to withstand the roughest sea conditions.

The secret behind mussels' adhesive success is an amino acid called dihydroxyphenylalanine–DOPA, for short. A chemical relative of dopamine–the neurotransmitter that helps control the human brain's pleasure and reward centers–DOPA is a critical ingredient in fastening the superglues and byssal threads to a location. It also enables mussel secretions to be both cohesive and adhesive–meaning they can adhere to themselves and other surfaces.

Lee and his research team blended DOPA with polymers such as polyester and rubber to create synthetic glue that holds together when wet. Laboratory tests demonstrated this material can attach to a variety of surfaces, including metal, plastic and even flesh and bone.

"One very valuable quality of this synthetic glue is its versatility," said Lee. "We can change the chemistry to make it as rigid or flexible as we need–while still maintaining its overall strength and durability."

Lee and his team are now trying to figure out how to use electrical currents to create a chemical "on-off" switch that temporarily changes DOPA molecules to make the synthetic adhesive sticky or non-sticky at will. So far, they've been able to accomplish this by tweaking the glue's pH balance, but are still working to achieve this capability using electrical stimulation.

"This work is novel in the sense that there is no smart adhesive out there that can perform underwater," said Lee. "The chemistry that we can potentially incorporate into the adhesive, causing it to reversibly bond and de-bond, is quite new."

Lee envisions multiple uses for such a "smart glue". It could bind underwater sensors and devices to the hulls of ships and submarines–or help unmanned vehicles dock along rocky coastlines or in remote locations.

There also are possible medical applications for an adhesive that can bind and un-bind at will. It could lead to new kinds of bandages that will stay attached when someone sweats or gets wet, and make it less painful to remove a dressing. The smart glue may even be used one day to attach prosthetic limbs and biometric sensors or seal surgical wounds.

For his adhesion efforts, Lee was named a 2016 winner within ONR's Young Investigator Program, a prestigious grant awarded to scientists and engineers with exceptional promise for producing creative, state-of-the-art research that appears likely to advance naval capabilities.

###

Media Contact

Bob Freeman
[email protected]
703-696-5031
@usnavyresearch

http://www.onr.navy.mil

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Mitochondrial mutation increases the risk of diabetes in Japanese men

January 21, 2021
IMAGE

New study: nine out of ten US infants experience gut microbiome deficiency

January 21, 2021

Catching cancer in the act

January 21, 2021

NASA mission to test technology for satellite swarms

January 21, 2021
Next Post
blank

Discovery of new bacteria complicates problem with salmon poisoning in dogs

Insulin resistance reversed by removal of protein

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Ecology/EnvironmentTechnology/Engineering/Computer SciencePublic HealthcancerMaterialsInfectious/Emerging DiseasesMedicine/HealthClimate ChangeCell BiologyGeneticsChemistry/Physics/Materials SciencesBiology

Recent Posts

  • Mitochondrial mutation increases the risk of diabetes in Japanese men
  • New study: nine out of ten US infants experience gut microbiome deficiency
  • Catching cancer in the act
  • NASA mission to test technology for satellite swarms
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In