• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Multi-functionalization of graphene for molecular targeted cancer therapy

Bioengineer by Bioengineer
April 23, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JAIST, CNRS

“Three” kinds of regalia such as crown, orb, and sward are often necessary to be a high king for conquering the world. For fighting off cancerous diseases, what do we need? This “triple” chemical modified nanomaterial might be save the patient.

Cancer is a leading cause of death worldwide. Under this situation, a successful tumor selective drug targeting and minimized toxicity of cancer drug are urgently necessary.

Scientists from Japan Advanced Institute of Science and Technology (JAIST) and Centre national de la recherche scientifique (CNRS), and their colleagues have developed a type of nanomedicine based on multi-functional graphene that allows for targeted cancer treatment at molecular level.

Single molecular sheet graphene is a promising carbon nanomaterial for various fundamental and practical applications in the next decade because of its excellent physico-chemical features. Graphene has been also known to have a good biocompatibility and biodegradability, thus leading to explore this nanocarbon as drug delivery carrier. However, it is not easy to modify a lot of individual functional molecules onto a graphene nano-sheet at the same time for its biomedical applications.

Developed by Prof. Eijiro Miyako from JAIST (Nomi, Japan), Dr. Alberto Bianco from CNRS (Strasbourg, France), and their international teams, the multi-functional graphene as a drug delivery carrier are successfully synthesized with “three” type of molecules such as near-infrared (NIR) fluorescent probe (indocyanine green; ICG), tumor targeting molecule (Folic acid: FA), and anticancer drug (doxorubicin; Dox) by a covalent chemical modification technique (Figure 1). ICG (green color part in the picture) was chosen as fluorophore to follow the uptake and to track the material inside the cells. FA (blue) was covalently bound through a polyethylene glycol (pink) linked to graphene, to specifically target the cancer cells, and Dox (red) was used as anticancer drug.

Aside from testing the therapeutic abilities to eliminate cancer cells in a culture dish, the team found that the unique properties of this multi-functional graphene showed an enhanced anticancer activity with excellent cancer targeting effect. This would open the doors to future biomedical applications of this type of material. The team plans to continue exploring multi-functional graphene towards the cancer therapy using murine animal model.

###

Paper titled “Rational chemical multifunctionalization of graphene interface enhances targeting cancer therapy”, published in Angewandte Chemie International Edition, DOI: 10.1002/anie.201916112

The work was supported by the Japan Society for the Promotion of Science KAKENHI Grant-in-Aid for Scientific Research (A) and (B), the KAKENHI Fund for the Promotion of Joint International Research, the Agence Nationale de la Recherche (ANR), the Graphene Flagship, the Spanish MINECO, the Generalitat Valenciana.

Media Contact
Eijiro Miyako
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.201916112

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Aligning Language Models with Human Brain Processing

October 2, 2025
MoS2 Nanosheets Enhance Capacitive Deionization Water Purification

MoS2 Nanosheets Enhance Capacitive Deionization Water Purification

October 2, 2025

Social Risk Factors Linked to Diabetes Prevalence

October 2, 2025

Miniature CRISPR–Cas10 Grants Immunity via Inhibition

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    71 shares
    Share 28 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Aligning Language Models with Human Brain Processing

MoS2 Nanosheets Enhance Capacitive Deionization Water Purification

Social Risk Factors Linked to Diabetes Prevalence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.