• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

MU neurobiologists annotate critical neuronal proteins in lamprey genome

Bioengineer by Bioengineer
April 15, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Missouri

The lamprey, an eel-like primitive vertebrate, is a popular organism for neurobiology studies because it has a relatively simple nervous system. It is of particular interest to those studying spinal cord injury (SCI) because, unlike humans, the lamprey can regenerate nerve connections and recover normal mobility within about 8 weeks following an injury to its spinal cord. With the first reference genome for the lamprey species (Petromyzon marinus) recently completed, this fish is now poised to accelerate research about how the nervous system normally functions and recovers following injury.

In a new study, a team of MU neurobiologists led by Dr. David Schulz and Dr. Andrew McClellan takes this advancement one step further by annotating the sequences of 47 ion channels across the genome. The researchers used bioinformatic tools to identify sequences from the lamprey genome that could potentially belong to ion channel families and then performed phylogenetic and gene expression analyses across nervous system tissues to confirm the identifications. The results are published in the journal Marine Genomics.

Ion channels are specialized pores in the cell membrane that move charged atoms, called ions, in and out of cells. In nerve cells, ion channels contribute substantially to transmission and processing of electrical signals. Given the critical role of ion channels in nervous system function, the authors say knowing their sequences will allow for more in-depth investigations of the nervous system to take place.

“The first step in manipulating the molecular aspects of the nervous system is to have a basic understanding of the structures that make it up. By identifying the sequences the lamprey uses to construct its ion channels, we have opened the door for directly targeting these sequences to measure their expression levels across cell types, change their abundances to see how the nervous system responds, and examine their role in recovery from SCI,” said Adam Northcutt, the MU graduate student who conducted the research and is lead author of the article.

###

The article, titled “Genomic discovery of ion channel genes in the central nervous system of the lamprey Petromyzon marinus,” is available ahead of print online at https://doi.org/10.1016/j.margen.2019.03.003.

The research was funded by a National Institutes of Health grant (NIGMS 5T32GM008396) and an NSF-REU SITE grant (DBI-1359283).

Media Contact
Eric Stann
[email protected]

Original Source

https://biology.missouri.edu/news/neurobiologists-annotate-nerve-proteins-lamprey-genome/

Tags: BioinformaticsBiologyCell BiologyGeneticsMarine/Freshwater BiologyMolecular BiologyneurobiologyPopulation BiologyTrauma/Injury
Share13Tweet8Share2ShareShareShare2

Related Posts

Autistic Teens and Families Discuss Path to Independence

October 24, 2025

Akkermansia Uses Polyphenols to Boost Iron Uptake

October 24, 2025

How HIV’s Shape-Shifting Protein Unlocks New Insights for Smarter Drug Design

October 24, 2025

Child Welfare System Involvement Enhances Detection of Developmental Delays

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1280 shares
    Share 511 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    187 shares
    Share 75 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Autistic Teens and Families Discuss Path to Independence

Akkermansia Uses Polyphenols to Boost Iron Uptake

How HIV’s Shape-Shifting Protein Unlocks New Insights for Smarter Drug Design

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.