• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Movement sensors can detect disease in wild boar

Bioengineer by Bioengineer
September 12, 2023
in Biology
Reading Time: 3 mins read
0
Wild boars
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Behavioral sensors attached to wild boars have been used to detect when animals are sick with African Swine Fever, a fatal viral disease that affects both boar and domestic pigs. Accelerometer sensors, which measure tiny changes in movement, showed that wild boars reduced their daily activity by up to 20 percent when infected with the virus. The findings, published by scientists from the Max Planck Institute of Animal Behavior, show that lightweight sensors can detect sickness behavior in wild boar – raising the possibility of a minimally invasive tool to assist in the control and prevention of African Swine Fever.

Wild boars

Credit: Kevin Morelle

Behavioral sensors attached to wild boars have been used to detect when animals are sick with African Swine Fever, a fatal viral disease that affects both boar and domestic pigs. Accelerometer sensors, which measure tiny changes in movement, showed that wild boars reduced their daily activity by up to 20 percent when infected with the virus. The findings, published by scientists from the Max Planck Institute of Animal Behavior, show that lightweight sensors can detect sickness behavior in wild boar – raising the possibility of a minimally invasive tool to assist in the control and prevention of African Swine Fever.

Although the virus cannot be transmitted to humans, African Swine Fever is a major threat to the global pig industry and has significant economic and social impact. The highly contagious virus spreads easily between wild boar and domestic pigs, and so knowing when a disease outbreak occurs in the wild and on farms is important for curbing the spread of African Swine Fever. But detecting disease in wild animals is not straight forward. Currently, testing for African Swine Fever in wild boar is done by sampling animals that are either hunted or found dead, which creates a long lag between when the disease emerges in a population to when it is actually detected.

Seeking to reduce this lag, scientists from Germany, Spain and Austria teamed up to investigate if technology that ‘reads’ an animal’s behavior could be harnessed for early detection of disease in wild boar. Their findings point to the potential of accelerometer sensors as an accessible tool that can support the existing disease management approaches for African Swine Fever surveillance and control. “This is a game-changer for wildlife disease monitoring,” says Kevin Morelle, first author of the study and a scientist with the Max Planck Institute of Animal Behavior. “We show that a lightweight behavioral sensor deployed on a wild animal can be a sentinel for potential health threats.”

Accelometers measure animals’ movements

The scientists attached accelerometer tags, weighting 30 grams, on twelve wild boars that were studied in controlled conditions. The boars were infected with African Swine Fever as part of a separate study aimed at developing a vaccine against the disease. The accelerometers, which are the equivalent of ‘Fitbits’ or pedometers, took ultra-high resolution measurements of the animals’ movements. The measurements, called ‘Overall Dynamic Body Acceleration’, showed how much the boars were active. The scientists found that when boars became sick with African Swine Fever, they were ten to twenty percent less active daily than when they were healthy. To validate the findings, the study authors attached accelerometers to a group of healthy boars living in natural conditions. They then compared the activity patterns of infected and healthy wild boar.

This study is the first to demonstrate that African Swine Fever can be detected at onset in wild boar by sensing and analyzing the movement behavior of animals. The findings could benefit a wide range of stakeholders involved in the control and prevention of African Swine Fever. However, the authors say that more needs to be done before the benefits of the movement technology are realized. This includes testing sensors in populations of wild boar living in natural conditions where the disease is known to occur. Further, the authors plan to design an algorithm for accelerometers that could analyze movement data to deliver real-time health assessments, such as when animals are infected with a virus. Says Morelle: “We still need to test the tool in real case situations to figure out if behavioral analysis can detect disease in wild animals that are living in different population sizes. We hope these first results pave the way for a behavioral system that provides vital insights into the spread of disease in wild animals, and facilitates timely control measures to save wildlife and domestic animals.”



Journal

Proceedings of the Royal Society B Biological Sciences

DOI

10.1098/rspb.2023.1396

Method of Research

Observational study

Article Title

Accelerometer-based detection of African swine fever infection in wild boar

Article Publication Date

31-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

How Different ALK Fusion Variants Impact Lung Cancer Treatment Success

September 23, 2025
Tracking Motor Skills Across the Lifespan: Using Percentile Reference Curves in Practice

Tracking Motor Skills Across the Lifespan: Using Percentile Reference Curves in Practice

September 23, 2025

Chinese Scientists Uncover Neural Mechanisms Regulating Energy Expenditure in the Arcuate Hypothalamus

September 23, 2025

Revolutionizing Camel Husbandry with ICT Monitoring System

September 23, 2025

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Microtia Treatment: Advances in Tissue Engineering

Cornelis (Cees) Dekker Honored with 2026 Kazuhiko Kinosita Award in Single-Molecule Biophysics

Nuria Assa-Munt Honored with 2026 Rosalba Kampman Distinguished Service Award

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.