• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mouse study shows spinal cord injury causes bone marrow failure syndrome

Bioengineer by Bioengineer
July 24, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The Ohio State University Wexner Medical Center

COLUMBUS, Ohio – Research conducted at The Ohio State University Wexner Medical Center and The Ohio State University College of Medicine found that spinal cord injuries in mice cause an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.

“We also found that it’s possible to overcome certain aspects of spinal cord injury-induced bone marrow failure. This could have an immediate impact on people affected by spinal cord injury,” said lead author Phillip Popovich, chair of the Ohio State Department of Neuroscience and executive director of Ohio State’s Belford Center for Spinal Cord Injury and Center for Brain and Spinal Cord Repair.

Findings are published online in the journal Nature Communications.

Spinal cord injury (SCI) is known to cause immune system dysfunction, which increases the risk of infections. This, in turn, increases hospitalizations and premature death.

Immune cells are made in the bone marrow. Healthy bone marrow requires proper communication with the nervous system, notably the spinal cord.

“Our research shows that spinal cord injury causes stem cells in the bone marrow – those required to make new immune cells – to rapidly divide. But after cell division, these cells become trapped in the bone marrow. We discovered one possible explanation for this,” said Randall S. Carpenter, first author and recently graduated PhD student from Ohio State’s Neuroscience Graduate program.

Notably, in bone marrow of mice with spinal cord injuries, there’s an increase in chemical signaling between stem progenitor cells and support cells in the bone marrow. This enhanced signaling locks the cells down so they can’t move away from the “niches” in which they are born and develop.

This lockdown can be reversed by post-injury injections of the FDA-approved drug Plerixafor, a small molecule inhibitor of CXCR4, a chemokine receptor. Even though Plerixafor frees blood stem cells and mature immune cells from bone marrow, other techniques showed that the intrinsic long-term functional capacity of bone marrow stem/progenitor cells is still impaired for several months post-injury.

Bone marrow failure diseases develop when the bone marrow can’t produce enough healthy mature white and red blood cells. Normal aging and various diseases including diabetes, cancers and chemotherapy also trap mature and immature cells in the bone marrow.

“In spinal cord injury patients, Plerixafor could be a potentially safe and effective way to mobilize cells from the bone marrow niche to help restore immune function. In fact, Plerixafor is already used in other clinical indications to help reverse immunodeficiency in patients; it just hasn’t been used after spinal cord injury,” Popovich said. “While this study was done in mice, these new data help explain observations that have been made in humans with spinal cord injuries,” Popovich said. “More research is needed to understand why the bone marrow failure develops, and whether it’s permanent.”

###

This study also included researchers from The Ohio State University Comprehensive Cancer Center, Ohio State’s Center for Biostatistics and Bioinformatics and Ohio State’s Division of Hematology.

Media Contact
Eileen Scahill
[email protected]

Tags: Disabled PersonsMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Super-Resistant Bacteria Discovered in Wild Birds at Coastal Rehabilitation Center in São Paulo, Brazil

September 25, 2025
Increase in Hospice and Palliative Care Consultations Observed in Emergency Departments

Increase in Hospice and Palliative Care Consultations Observed in Emergency Departments

September 25, 2025

Duke Researchers Find Strong Connection Between Childhood Stress and Adult Chronic Disease

September 25, 2025

Flavored Marijuana Vapes Emerge as Leading Trend in Teen Substance Use, Raising Concerns Over Addiction

September 25, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    76 shares
    Share 30 Tweet 19
  • Physicists Develop Visible Time Crystal for the First Time

    71 shares
    Share 28 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    53 shares
    Share 21 Tweet 13
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Sludge Dewatering and Metal Stabilization with Persulfate

Micro-LED Technology Poised to Revolutionize Next-Generation Displays

PSU Study Reveals Transit-Oriented Developments in Portland Decrease Car Usage, Particularly in Affordable Housing Areas

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.