• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mouse study identifies new target for human accelerated aging syndrome

Bioengineer by Bioengineer
April 27, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the University of Cambridge have identified a potential therapeutic target in the devastating genetic disease Hutchinson-Gilford Progeria Syndrome (HGPS), which is characterised by premature ageing.

In a paper published today in Nature Communications, scientists provide preclinical data showing that chemical inhibition or genetic deregulation of the enzyme N-acetyltransferase 10 (NAT10) leads to significant health and lifespan gains in a mouse model of HGPS.

HGPS is a rare condition: patients have an average life expectancy of around 15 years, suffering a variety of symptoms including short stature, low body weight, hair loss, skin thickening, problems with fat storage, osteoporosis, and cardiovascular disease, typically dying of a heart attack.

The disease arises from specific mutations in the gene for the protein Lamin A, which lead to production of a shorter, dysfunctional protein that accumulates in cells, specifically in the membranes surrounding the nucleus. This causes disorganisation of chromatin (the 'packaging' around DNA), deregulated transcription, accumulation of DNA damage and defective cell proliferation.

By screening candidate molecules for an effect on nuclear membranes in human HGPS patient-derived cells in vitro, the authors have previously identified a small molecule called remodelin as an effective ameliorative agent. They then identified which component of the cells was being affected by remodelin: an enzyme with a variety of cell functions, called NAT10.

Their aim in the new study was to take these findings into a mouse model with the same genetic defect as HGPS patients, to see whether inhibiting NAT10 – either chemically by administration of remodelin or genetically by engineering reduced production of NAT10 – could ameliorate the disease. The results show that these approaches indeed significantly improved the health of the diseased mice, increased their lifespan, and reduced the effects of the HGPS mutation across a variety of measures in body tissues and at the cellular level.

The research was led by Dr Gabriel Balmus from the Wellcome Trust/ Cancer Research UK Gurdon Institute and Dr Delphine Larrieu from the Cambridge Institute for Medical Research, University of Cambridge; and Dr David Adams from the Wellcome Sanger Institute.

Senior author Professor Steve Jackson commented: "We're very excited by the possibility that drugs targeting NAT10 may, in future, be tested on people suffering from HGPS. I like to describe this approach as a 're-balancing towards the healthy state'.

"We first studied the cell biology to understand how the disease affects cells, and then used those findings to identify ways to re-balance the defect at the whole-organism level. Our findings in mice suggest a therapeutic approach to HGPS and other premature ageing diseases."

###

This study was funded by the Wellcome and the Medical Research Council, and core funding to the Gurdon Institute from the Wellcome and Cancer Research UK.

Media Contact

Claire O'Brien
[email protected]
44-122-333-4116
@Cambridge_Uni

http://www.cam.ac.uk

http://dx.doi.org/10.1038/S41467-018-03770-3

Share12Tweet7Share2ShareShareShare1

Related Posts

Collaborative Hypertension Care for Medicare Patients

September 20, 2025

Mentoring Tomorrow’s Neonatologists: Director Tips

September 20, 2025

Detecting Gunshot Residues: Ammo, Surface, Blood Effects

September 20, 2025

Vitamin D Deficiency: A Hidden Cause of Childhood Fatigue

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CAR T-Cell and TIL Therapies in GI Cancers

Apratoxin S10: Dual RTK and Tumor Microenvironment Modulator

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.