• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Motor enzyme protects genome through several mechanisms

Bioengineer by Bioengineer
February 11, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mattias Pettersson


A helicase, Pfh1, can thanks to several different mechanisms protect the genome from DNA obstacles and damages associated with cancer. This is shown in a doctoral thesis at Umeå university, Sweden.

Approximately one per cent of each organism’s genome encodes helicases. Helicases are mostly known as motor enzymes that can unwrap double-stranded DNA by use of energy. In his doctoral thesis at the Department of Medical Cheimstry and Biophysics at Umeå University, Jani Basha Mohammad focused on the evolutionary conserved Pif1 family helicases that are associated to breast cancer.

He performed a detailed mechanistic study about how the yeast Schizosaccharomyces pombe Pif1 helicase, Pfh1, can maintain genome integrity. In S. pombe, Pfh1 is encoded by an essential gene and depletion of this gene leads to DNA damage.

DNA molecules are known to form a double-stranded DNA helix with two strands wrapping around each other. However, in his thesis Jani also studied another form of DNA which forms a four-stranded DNA in guanine-rich DNA regions, a so-called G4 structure. G4 structures are very stable structures, and need to be resolved by specialized helicases. If not unfolded, they can lead to DNA damage and genome instability, which is tightly connected to diseases such as cancer.

Jani Basha Mohammad and his colleagues showed that Pfh1 is one of the specialized helicases that can unwind these structures, and thereby promoting genome integrity.

Other obstacles that can threaten genome integrity are tightly bound proteins to the genome and R-loops, a three-stranded RNA/DNA region. Jani Basha Mohammad showed that Pfh1 helicase also efficiently remove these obstacles from the genome. As these types of obstacles are found in humans as well, it is very likely that the human Pfh1 homolog, Pif1, also have similar properties. Apart from the above properties, Jani also found that Pfh1 can rewind DNA molecules, an enzymatic activity that may be important during DNA repair.

Jani Basha Mohammad further characterized different domains of the Pfh1 protein. One of these domains is mutated in human Pif1 and is carried by some breast cancer patients. This domain is evolutionary conserved, and he could show that the corresponding mutation in Pfh1 leads to a misregulated Pfh1. These misregulations may explain the genome integrity defects that is found in the breast cancer families.

The data has shed light on how Pfh1 can promote genome integrity. These studies have been quite tricky to perform previously, since Pfh1 has been difficult to express and purify. Therefore, by optimizing the purification protocols Jani Basha Mohammad and his colleagues could finally perform these in-depth mechanistic studies.

Jani Basha Mohammad has studied Biotechnology in Banglore University, India. He moved to Sweden in spring 2009 to study a master program in Biochemistry.

###

Media Contact
Ola Nilsson
[email protected]

Original Source

http://umu.diva-portal.org/smash/record.jsf?language=sv&pid=diva2%3A1279948&dswid=5558

Tags: BiochemistryBiomechanics/BiophysicsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.