• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Motivation to seek cocaine is driven by elegant cellular communication

Bioengineer by Bioengineer
October 29, 2020
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Medical University of South Carolina and the National Institutes of Health uncover how drug cues change the connectivity between brain cells, making it more difficult to stop seeking drugs.

IMAGE

Credit: Image courtesy of Dr. Peter Kalivas and Dr. Garcia-Keller. Medical University of South Carolina

In the October 28, 2020 issue of the Journal of Neuroscience, researchers from the Medical University of South Carolina and the National Institutes of Health describe how reminders of drug use can change specific brain cells responsible for motivation, increasing the desire to seek drugs. Connections between these and other brain cells strengthen because the dendritic spines, the parts of the brain cells that receive messages from other neurons, enlarge in response to intercellular communication by molecules in the brain. This enhanced connectivity increases the urge to engage in drug use, making relapse more likely. Understanding this communication pathway could lead to more targeted treatments for drug addiction.

The study was led by MUSC Department of Neuroscience professor Peter W. Kalivas, Ph.D., and assistant professor Constanza Garcia-Keller, Ph.D., who works in the Kalivas lab.

For decades, the Kalivas laboratory has been studying the mechanisms behind drug addiction. In previous studies, Kalivas and his team have shown that an increase in the size of these spines correlates with how much an animal will work for a drug, such as cocaine. Interestingly, these spines enlarge in response to signals sent not from other neurons but from the extracellular matrix that surrounds these cells. They found that these signals from outside the brain cells lead to internal changes in the neurons to change their connections to other neurons.

“The key finding is that enlargement of spines is necessary and induced by cues that are associated with addictive drugs, not cues that are associated with natural rewards,” explained Kalivas.

That’s an important distinction because it means that treatments can be developed to diminish the cravings for drugs without depriving patients of pleasurable experiences.

The researchers were able to image the fine details of the neurons in the nucleus accumbens of the brain, a region that has been implicated in driving drug addiction, with high-resolution confocal microscopy. They could see how the spines changed under different conditions and could even visualize the signaling molecules inside the cells that led to the increase in spine size.

One of these molecules in the neurons is focal adhesion kinase (FAK). When Kalivas and his team inhibited this protein with a drug, the animals did not seek cocaine when exposed to a reminder of the drug. In addition, they showed that modifications to this kinase and the actin-binding protein cofilin led to spine enlargement and enhanced connections in a specific cell type in the brain known as D1-medium spiny neurons -neurons in the nucleus accumbens that motivate behavior.

“There are actually two cell groups in the nucleus accumbens. One motivates, and the other puts the brakes on behavior,” said Kalivas. “Our study showed that this signaling is going through the cell group that promotes motivating behavior and not so much the cell group that is responsible for inhibiting behavior.”

In other words, the cocaine is changing brain structure and function, especially in D1-medium spiny neurons, to motivate the animal to seek more cocaine.

Better understanding how drug reminders change neuronal structure by altering brain signaling will be crucial to developing effective therapies to avoid relapse.

“The long-range goal is to establish therapies to help to prevent or reduce this relapse event that happens in people who try to recover,” said Garcia-Keller. “However, we first need to understand the signaling system better before we devise novel pharmacological treatments.”

###

About the Medical University of South Carolina

Founded in 1824 in Charleston, MUSC is the oldest medical school in the South, as well as the state’s only integrated, academic health sciences center with a unique charge to serve the state through education, research and patient care. Each year, MUSC educates and trains more than 3,000 students and nearly 800 residents in six colleges: Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing and Pharmacy. The state’s leader in obtaining biomedical research funds, in fiscal year 2019, MUSC set a new high, bringing in more than $284 million. For information on academic programs, visit musc.edu.

As the clinical health system of the Medical University of South Carolina, MUSC Health is dedicated to delivering the highest quality patient care available, while training generations of competent, compassionate health care providers to serve the people of South Carolina and beyond. Comprising some 1,600 beds, more than 100 outreach sites, the MUSC College of Medicine, the physicians’ practice plan, and nearly 275 telehealth locations, MUSC Health owns and operates eight hospitals situated in Charleston, Chester, Florence, Lancaster and Marion counties. In 2019, for the fifth consecutive year, U.S. News & World Report named MUSC Health the No. 1 hospital in South Carolina. To learn more about clinical patient services, visit muschealth.org.

MUSC and its affiliates have collective annual budgets of $3.2 billion. The more than 17,000 MUSC team members include world-class faculty, physicians, specialty providers and scientists who deliver groundbreaking education, research, technology and patient care.

Media Contact
Heather Woolwine
[email protected]

Related Journal Article

http://dx.doi.org/10.1523/JNEUROSCI.2666-19.2020

Tags: AddictionBehaviorCell BiologyDrugsMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

October 1, 2025
blank

Oncotarget Editor-in-Chief Wafik S. El-Deiry to Chair 2025 WIN Symposium in Partnership with APM in Philadelphia

October 1, 2025

Linking Nurses’ Emotional Skills to Care Competence

October 1, 2025

Tracking Ovarian Cancer Evolution via Cell-Free DNA

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    65 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

High-Frame Ultrasound Reveals Liver Cancer Insights

Impact of Reaction Time on α-MnO₂ in Zinc-Ion Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.