• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, June 29, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Moth’s eye inspires critical component on SOFIA’s newest instrument

Bioengineer by Bioengineer
December 20, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credits: NASA

Nature, and more particularly a moth's eye, inspired the technology that allows a new NASA-developed camera to create images of astronomical objects with far greater sensitivity than was previously possible.

The idea is simple. When examined close up, a moth's eye contains a very fine array of small tapered cylindrical protuberances. Their job is to reduce reflection, allowing these nocturnal creatures to absorb as a much light as possible so that they can navigate even in the dark.

The same absorber technology concept, when applied to a far-infrared absorber, results in a silicon structure containing thousands of tightly packed, micro-machined spikes or cylindrical protuberances no taller than a grain of sand. It is a critical component of the four 1,280-pixel bolometer detector arrays that a team of scientists and technologists at NASA's Goddard Space Flight Center in Greenbelt, Maryland, created for the High-Resolution Airborne Wideband Camera-plus, or HAWC+.

NASA just completed the commissioning of HAWC+ onboard the Stratospheric Observatory for Infrared Astronomy, or SOFIA, a joint venture involving NASA and the German Aerospace Center, or DLR. This heavily-modified 747SP aircraft carries with it an eight-foot telescope and six instruments to altitudes high enough not to be obscured by water in Earth's atmosphere, which blocks most of the infrared radiation from celestial sources.

The upgraded camera not only makes images, but also measures the polarized light from the emission of dust in our galaxy. With this instrument, scientists will be able to study the early stages of star and planet formation, and, with HAWC+'s polarimeter, map the magnetic fields in the environment around the supermassive black hole at the center of the Milky Way.

With such a system — never before used in astronomy — even minute variations in the light's frequency and direction can be measured. "This enables the detector to be used over a wider bandwidth. It makes the detector far more sensitive — especially in the far infrared," said Goddard scientist Ed Wollack, who worked with Goddard detector expert Christine Jhabvala to devise and build the micro-machined absorbers critical to the Goddard-developed bolometer detectors.

Bolometers are commonly used to measure infrared or heat radiation, and are, in essence, very sensitive thermometers. When radiation is focused and strikes an absorptive element, typically a material with a resistive coating, the element is heated. A superconducting sensor then measures the resulting change in temperature, revealing the intensity of the incident infrared light.

This particular bolometer is a variation of a detector technology called the backshort under-grid sensor, or BUGS, used now on a number of other infrared-sensitive instruments. In this particular application, the reflective optical structures — the so-called backshorts — are replaced with the micro-machined absorbers that stop and absorb the light.

The team had experimented with carbon nanotubes as a potential absorber. However, the cylindrically shaped tubes now used for a variety of spaceflight applications proved ineffective at absorbing far-infrared wavelengths. In the end, Wollack looked to the moth as a possible solution.

"You can be inspired by something in nature, but you need to use the tools at hand to create it," Wollack said. "It really was the coming together of people, machines, and materials. Now we have a new capability that we didn't have before. This is what innovation is all about."

###

Media Contact

Rob Gutro
[email protected]
@NASAGoddard

http://www.nasa.gov/goddard

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Stephen Kingsmore, MD, DSc

Dr. Stephen Kingsmore receives prestigious Precision Medicine World Conference 2022 Luminary Award

June 29, 2022
Berkeley Surface Emitting Laser

New single-mode semiconductor laser delivers power with scalability

June 29, 2022

Monitoring COVID-19: Could medicine found in wastewater provide an early warning?

June 29, 2022

Ice Age wolf DNA reveals dogs trace ancestry to two separate wolf populations

June 29, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryUrbanizationVirusViolence/CriminalsVehiclesVaccinesWeather/StormsZoology/Veterinary ScienceUniversity of WashingtonVaccineVirologyUrogenital System

Recent Posts

  • Dr. Stephen Kingsmore receives prestigious Precision Medicine World Conference 2022 Luminary Award
  • New single-mode semiconductor laser delivers power with scalability
  • Monitoring COVID-19: Could medicine found in wastewater provide an early warning?
  • Ice Age wolf DNA reveals dogs trace ancestry to two separate wolf populations
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....