• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Montana State computer scientists help expand horizon of genetics research

Bioengineer by Bioengineer
June 3, 2019
in Science
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: MSU Photo by Adrian Sanchez-Gonzalez

BOZEMAN — A tweaked gene or two among the millions or even billions of proteins that make up an organism’s DNA are often all that distinguish the drought-tolerant plant or the person pre-disposed to cancer.

That’s why a better understanding of genetic variation within a species could, among other things, help improve selection of crops for local conditions and detection of disease, according to Joann Mudge, senior research scientist at the nonprofit National Center for Genome Resources.

A generation ago, recording an organism’s DNA from beginning to end was so laborious and expensive that scientists celebrated when they completed the task for a single bacterium. But as genome sequencing becomes faster and cheaper, scientists increasingly have access to insights about which genes do what, Mudge said.

“We’re sequencing multiple individuals of some species,” including plants and other complex organisms, Mudge said. That allows scientists to begin to sort out which segments of DNA form a species’ core genome and which correspond to traits shared by only some individuals, she said.

But the growing field of pangenomics, as it is called, presents a major analytical challenge. That’s why NCGR recently partnered with Montana State University computer scientists to develop software that can compare multiple genomes and make sense of the results. The project is backed by a three-year, $662,000 grant from the National Science Foundation.

“We’ve been very happy with the way it’s working,” said Brendan Mumey, professor in the Gianforte School of Computing in MSU’s Norm Asbjornson College of Engineering. He and Mudge are co-leading the project.

According to Mumey, previously available software struggled with analyzing pangenomes for relatively primitive organisms such as the common yeast Saccharomyces cerevisiae, whose genome contains only 12 million of the DNA units known as base pairs. (By comparison, the human genome contains 3 billion base pairs.) Among the known strains of the yeast, minor genetic variations account for physical adaptations such as the ability of brewer’s yeast to survive alcohol during the making of beer and wine.

“It’s a classic ‘big data’ problem,” Mumey said, referring to the field of computing that deals with exceptionally large and complex data sets.

MSU assistant professor of computer science Indika Kahanda, a member of the research team, specializes in developing the “machine learning” models that help the new software adjust its gene-sorting analysis according to input from scientists. That approach has helped the team, which includes NCGR research scientist Thiru Ramaraj, identify genes of interest in a yeast pangenome that includes roughly 100 strains. Ramaraj earned his doctorate in computer science in 2010 at MSU, where Mumey was his adviser.

Mumey said the researchers’ next step is to continue to refine the software so it can handle larger and more complex genomes, such as those of plants. The computational techniques being used “are still in their infancy,” he said.

Eventually, pangenomics could help medical professionals diagnose a variety of diseases that have a genetic component, Mudge said. Most inherited breast cancer can be traced to mutations in just two genes, but other genetic diseases are thought to stem from more complex changes across larger areas of DNA.

The improved pangenomics tool is already helping scientists break out of a mold of comparing genomes to a single, arbitrary reference, Mudge said. Instead, researchers can represent a species’ entire genome with all its nuance and variety.

“It’s a hard problem to solve,” Mudge said. “This has been a great collaboration.”

###

Media Contact
Brendan Mumey
[email protected]

Original Source

https://www.montana.edu/news/18767/msu-computer-scientists-help-expand-horizon-of-genetics-research

Tags: BioinformaticsBiologyBiotechnologyComputer ScienceGenesGeneticsSoftware EngineeringTechnology/Engineering/Computer ScienceTheory/Design
Share13Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Large Language Models in Obesity: A Review

Evaluating Self-Assessment Tools for Disaster Nursing Competencies

Sickle Cell Disease: Impact on Children’s Health in Sudan

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.