• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

‘Monster tumors’ could offer new glimpse at human development

Bioengineer by Bioengineer
November 4, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Daniella McDonald

Finding just the right model to study human development–from the early embryonic stage onward–has been a challenge for scientists over the last decade. Now, bioengineers at the University of California San Diego have homed in on an unusual candidate: teratomas.

Teratomas– which mean “monstrous tumors” in Greek–are tumors made up of different tissues such as bone, brain, hair and muscle. They form when a mass of stem cells differentiates uncontrollably, forming all types of tissues found in the body. Teratomas are generally considered an undesired byproduct of stem cell research, but UC San Diego researchers found an opportunity to study them as a model for human development.

Researchers report their work in a paper published Nov. 4 in Cell.

“We’ve been fascinated with the teratoma for quite a while,” said Prashant Mali, a professor of bioengineering at the UC San Diego Jacobs School of Engineering. “Not only is the teratoma an intriguing tumor to look at in terms of the diversity of cell types, but it also has regions of organized tissue-like structures. This prompted us to explore its utility in both cell science and cell engineering contexts.”

“There’s no other model like it. In just one tumor, you can study all of these different lineages, all of these different organs, at the same time,” said Daniella McDonald, an M.D/Ph.D. candidate in Mali’s lab and co-first author of the study. “Plus, it’s a vascularized model, it has a three-dimensional structure and it’s human-specific tissue, making it the ideal model for recreating the context in which human development happens.”

The team used teratomas grown from human stem cells injected under the skin of immunodeficient mice. They analyzed the teratomas with a technique called single-cell RNA sequencing, which profiles the gene expression of individual teratoma cells. The researchers were able to map 20 cell types, or “human lineages” (brain, gut, muscle, skin, etc.) that were consistently present in all the teratomas they analyzed.

The researchers then used the gene editing technology CRISPR-Cas9 to screen and knock out 24 genes known to regulate development. They found multiple genes that play roles in the development of multiple lineages.

“What’s remarkable about this study is that we could use the teratoma to discover things in a much faster way. We can study all of these genes on all of these human lineages in a single experiment,” said co-first author Yan Wu, who worked on this project as a Ph.D. student in the labs of Mali and UC San Diego bioengineering professor Kun Zhang. “With other models, like organoids, that separately model one lineage at a time, we would have had to run many different experiments to come up with the same results as we did here.”

“Teratomas are a very unique type of human tissue. When examined through the lens of single-cell sequencing, we can see that they contain most major representative cell types in the human body. With that understanding, we suddenly have an extremely powerful platform to understand, manipulate and engineer human cells and tissues in a far more sophisticated way than what was previously possible,” Zhang said.

The researchers also showed that they can “molecularly sculpt” the teratoma to be enriched in one lineage–in this case, neural tissue. They accomplished this feat using a microRNA gene circuit, which acts like a molecular chisel by carving away unwanted tissues–these are selectively killed off using a suicide gene–and leaving behind the lineage of interest. The researchers say this has applications in tissue engineering.

“We envision that this study will set a new foundation in the field. Hopefully, other scientists will be using the teratoma as a model for future discoveries in human development,” McDonald said.

###

Media Contact
Liezel Labios
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2020.10.018

Tags: BiologyBiotechnologyCell BiologyGeneticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Nurses’ Occupational Hazards in the UAE

November 4, 2025

AI and Human Reasoning in Oncology: Key Implementation Questions

November 4, 2025

Three Health Tech Innovators Honored for Pioneering Digital Solutions Revolutionizing Cardiovascular Care

November 4, 2025

Digital Divide Shrinks, Yet Gaps Persist for Australians Amidst Surge in GenAI Adoption

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Nurses’ Occupational Hazards in the UAE

AI and Human Reasoning in Oncology: Key Implementation Questions

Three Health Tech Innovators Honored for Pioneering Digital Solutions Revolutionizing Cardiovascular Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.