• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

Bioengineer by Bioengineer
January 31, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Data stored in ice cores dating back 55 years bring new insight into atmospheric levels of a molecule that can significantly affect weather and climate.

Drilling the ice core

Credit: Sumito Matoba

Data stored in ice cores dating back 55 years bring new insight into atmospheric levels of a molecule that can significantly affect weather and climate.

Dimethyl sulfide (C2H6S) is a small molecule released by phytoplankton in the ocean, which can play a big role in regulating the Earth’s climate. It encourages cloud formation above the sea, and is often called an ‘anti-greenhouse gas’, since clouds block radiation from the sun and lower sea surface temperatures. At least some blocked heat will be retained in the atmosphere, however, so the effects can be complex. Researchers at Hokkaido University have charted evidence for increasing dimethyl sulfide emissions linked to the retreat of sea ice from Greenland as the planet warms. They report their findings in the journal Communications Earth & Environment.

Modelling studies have long suggested that the decline in Arctic sea ice could lead to increased dimethyl sulfide emission, but direct evidence for this has been lacking. Assistant Professor Sumito Matoba and colleagues have inferred dimethyl sulfide levels over 55 years by quantifying the related compound, methane sulfonic acid (MSA), in ice core samples from the south-east Greenland ice sheet. MSA is directly produced from dimethyl sulfide, serving as a stable record of dimethyl sulfide levels. This process is part of a variety of chemical interactions among aerosols in the atmosphere.

The team, including researchers from Nagoya University and Japan’s Aerospace Exploration Agency, reconstructed the annual and seasonal MSA flux from 1960 to 2014, at a monthly resolution. The annual MSA levels decreased from 1960 to 2001, but then markedly increased after 2002.

“We found that July to September MSA fluxes were three to six times higher between 2002 and 2014 than between 1972 and 2001,” says Matoba. “We attribute this to the earlier retreat of sea ice in recent years.”

Supporting evidence comes from satellite data that has monitored the levels of the crucial sunlight-absorbing green pigment chlorophyll-a in the surrounding seas. The chlorophyll-a serves as an indicator of phytoplankton abundance, which in turn should correlate well with the amount of dimethyl sulfide released by the phytoplankton.

Arctic temperatures are rising twice as fast as the global average, and the summer seasonal sea ice extent has declined sharply in recent decades. This increases the amount of light striking the ocean and promotes the growth of phytoplankton.

While the latest results from the Hokkaido team add important confirmation of the changing dimethyl sulfide levels, Matoba emphasises that long-term and continuous monitoring of aerosols is needed. “This will be essential to follow the current impact, and predict future impacts, of dimethyl sulfide emissions on the global climate,” he says.



Journal

Communications Earth & Environment

DOI

10.1038/s43247-022-00661-w

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Increased oceanic dimethyl sulfide emissions in areas of sea ice retreat inferred from a Greenland ice core

Article Publication Date

26-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Amundsen Sea Embayment

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

March 21, 2023
ATcT-image-1-16x9 (002)

Department of Energy recognizes two decades’ worth of Argonne’s high-quality thermochemical data

March 20, 2023

‘Fishing’ for biomarkers

March 20, 2023

First detection of neutrinos made at a particle collider

March 20, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    61 shares
    Share 24 Tweet 15
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Minderoo-Monaco Commission on Plastics and Human Health issues sweeping new report

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In