• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Molecular sleuthing identifies and corrects major flaws in blood-brain barrier model

Bioengineer by Bioengineer
February 8, 2021
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image courtesy of the Lis lab

A type of cell derived from human stem cells that has been widely used for brain research and drug development may have been leading researchers astray for years, according to a study from scientists at Weill Cornell Medicine and Columbia University Irving Medical Center.

The cell, known as an induced Brain Microvascular Endothelial Cell (iBMEC), was first described by other researchers in 2012, and has been used to model the special lining of capillaries in the brain that is called the “blood-brain barrier.” Many brain diseases, including brain cancers as well as degenerative and genetic disorders, could be much more treatable if researchers could get drugs across this barrier. For that and other reasons, iBMEC-based models of the barrier have been embraced as an important standard tool in brain research.

However, in a study published Feb. 4 in the Proceedings of the National Academy of Sciences, the Weill Cornell Medicine scientists, in collaboration with scientists at Columbia University Irving Medical Center and Memorial Sloan Kettering Cancer Center, analyzed the gene expression patterns of iBMECs and found that, in fact, they are not endothelial cells–specialized cells that line blood vessels–and thus are unlikely to be useful in making accurate models of the blood-brain barrier.

“Models of key tissues and structures using stem cell technology are potentially very useful in developing better disease treatments, but as this experience indicates, we need to rigorously evaluate these models before embracing them,” said co-senior author Dr. RaphaĆ«l Lis, assistant professor of reproductive medicine in medicine and a member of the Ansary Stem Cell Institute in the Division of Regenerative Medicine at Weill Cornell Medicine. Dr. Lis is also an assistant professor of reproductive medicine in the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine at Weill Cornell Medicine.

Since 2007, researchers have known that they can use combinations of transcription factor proteins, which control gene activity, to reprogram ordinary adult cells, such as skin cells sampled from a patient, into cells resembling the stem cells of the embryonic stage of life. Researchers can then use similar reprogramming techniques to coax these cells, called induced pluripotent stem cells, to mature into different cell types–cells that can be studied in the lab for clues to normal health and disease.

The announcement in 2012 that researchers had made iBMECs, using such techniques, was exciting because the cells seemed to be one of the first highly tissue-specific cell types created with stem cell methods. The cells also seemed especially useful for research, for they were thought to be essentially the same as the vessel-lining endothelial cells that form the blood-brain barrier–which normally prevents most molecules in the blood from crossing into brain tissue. Research using iBMECs to model the blood-brain barrier, to better understand neurological diseases and develop new treatments, has been well funded and has expanded to involve many laboratories around the world.

In trying to work with iBMECs, the collaborating teams noted major unexplained discrepancies between these cells and bona fide endothelial cells, for example in their patterns of gene activity. That prompted them to investigate further, using advanced methods including the latest single-cell sequencing techniques, to rigorously compare the gene activity in iBMECs and in authentic human brain endothelial cells.

They found that iBMECs in fact have a largely non-endothelial pattern of gene activity, with little or no activity among key endothelial transcription factors or other accepted gene signatures. The cells, they found, also lack standard cell-surface proteins found in endothelial cells. Their analysis suggested that iBMECs were mistakenly classified as endothelial cells and rather represent different cell type called epithelial cells. Epithelial cells participate in the formation of a physical barrier shielding the body from pathogens and environmental insults, while supporting the transport of fluids, nutrients and waste. Present in numerous organs like intestines, lungs or skin, the epithelial barrier, unlike endothelial cells, is not equipped to transport blood.

The researchers noted that the initial studies of iBMECs almost a decade ago put more emphasis on the mechanical, barrier-like properties of these cells and less on their actual cellular identity as revealed through gene activity patterns.

Generation of various human tissues from pluripotent stem cells is one the most widely used techniques in laboratories world-wide. This study indicates that such techniques should be studied carefully to avoid misidentification of cells that could result in inaccurate outcomes.

“Previously there were fewer methods for studying gene expression profiles, and there was less understanding of the patterns that make up the identities of distinct cell types,” said co-senior author Dr. David Redmond, assistant professor of computational biology research in medicine and a member of the Ansary Stem Cell Institute in the Division of Regenerative Medicine at Weill Cornell Medicine.

The team found that by forcing the activity of three known endothelial cell transcription factors, they could reprogram iBMECs to be much more like endothelial cells.

“We don’t yet have a good ‘blood-brain barrier in a lab dish’ model, but I think we are now a step closer to that goal, and have also corrected an important misconception in the field,” said first author Tyler Lu, a research specialist in the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine at Weill Cornell Medicine.

###

Media Contact
Krystle Lopez
[email protected]

Original Source

https://news.weill.cornell.edu/news/2021/02/molecular-sleuthing-identifies-and-corrects-major-flaws-in-blood-brain-barrier-model

Tags: Medicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

August 23, 2025
Link Between Type 2 Diabetes and Heart Failure

Link Between Type 2 Diabetes and Heart Failure

August 23, 2025

Exploring Type 3 APS, T1DM, and LADA Insights

August 23, 2025

Thermal Vests Alleviate Mealtime Anxiety in Anorexia Patients

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Link Between Type 2 Diabetes and Heart Failure

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.