• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Molecular mechanism behind nutrient element-induced plant disease resistance discovered

Bioengineer by Bioengineer
January 10, 2023
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Just like humans can’t subsist on a diet of only French fries and brownies, plants must also consume a balanced diet to maintain optimal health and bolster their immune responses. Nutrient element uptake is necessary for plant growth, development, and reproduction. In some cases, treatment with essential elements has been shown to induce plant disease resistance, but conclusive research on the molecular basis of this remedy has been limited.

Gupta et al.

Credit: Maya Bar

Just like humans can’t subsist on a diet of only French fries and brownies, plants must also consume a balanced diet to maintain optimal health and bolster their immune responses. Nutrient element uptake is necessary for plant growth, development, and reproduction. In some cases, treatment with essential elements has been shown to induce plant disease resistance, but conclusive research on the molecular basis of this remedy has been limited.

In one of the few studies to directly investigate the mechanism underlying the effect of essential elements on plant disease resistance, Rupali Gupta of Volcani Institute and colleagues demonstrate that nutrient elements activate immune responses in tomato plants through different defense signaling pathways.

Their paper, recently published in Phytopathology, outlines the molecular mode of action that potassium, calcium, magnesium, and sodium take to minimize both fungal and bacterial plant diseases. Using straightforward laboratory methods, the authors demonstrate that essential element spray treatment sufficiently activates immune responses in tomato—including defense gene expression, cellular leakage, reactive oxygen species production, and ethylene production—leading to disease resistance. Their results suggest that different defense signaling pathways are required for induction of immunity in response to different elements.

Understanding the genetic mechanism underlying this process may provide new insights into crop improvement. Corresponding author Maya Bar comments, “We are excited to probe the molecular basis of this phenomenon, define another facet of induced resistance, and provide data that will assist in applying this principle to agricultural systems in a more purposeful, reproducible manner.”

The tenets of mineral nutrient-induced disease resistance discovered in this study can be exploited in agricultural practices—benefiting growers/farmers and protecting valuable crops.

 

For additional details, read Nutrient Elements Promote Disease Resistance in Tomato by Differentially Activating Immune Pathways published in Vol. 112, No. 11 November 2022 of Phytopathology.
 

Follow one of the corresponding authors on Twitter

Maya Bar, @MayaPifff

 

Follow us on Twitter @PhytopathologyJ and visit https://apsjournals.apsnet.org/journal/phyto to learn more.



Journal

Phytopathology

DOI

10.1094/PHYTO-02-22-0052-R

Article Title

Nutrient Elements Promote Disease Resistance in Tomato by Differentially Activating Immune Pathways

Article Publication Date

2-Dec-2022

COI Statement

The author(s) declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

The Laser setup in research

An illuminated water droplet creates an ‘optical atom’

January 31, 2023
Drilling the ice core

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

January 31, 2023

$1M grant to U chemists could accelerate drug development

January 30, 2023

New method to control electron spin paves the way for efficient quantum computers

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

An illuminated water droplet creates an ‘optical atom’

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In