• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Molecular ‘blueprint’ illuminates how plants perceive light

Bioengineer by Bioengineer
March 30, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

GRAND RAPIDS, Mich. (March 30, 2022) — Plants rely on their ability to sense light for survival. But unlike animals, plants don’t have eyes full of photoreceptors to capture and convey messages from visual stimuli. Instead, plants are coated with a network of light-sensing photoreceptors that detect different wavelengths of light, allowing them to regulate their lifecycles and adjust to environmental conditions.

The structure of PhyB interacting with a chromophore

Credit: Image courtesy of Dr. Huilin Li, Van Andel Institute.

GRAND RAPIDS, Mich. (March 30, 2022) — Plants rely on their ability to sense light for survival. But unlike animals, plants don’t have eyes full of photoreceptors to capture and convey messages from visual stimuli. Instead, plants are coated with a network of light-sensing photoreceptors that detect different wavelengths of light, allowing them to regulate their lifecycles and adjust to environmental conditions.

Now, Van Andel Institute and Washington University scientists have determined the molecular structure of one of these vital photoreceptors — a protein known as PhyB — revealing a wholly different structure than previously known. The findings, published today in Nature, may have implications for agricultural and “green” bioengineering practices.

“Photoreceptors, such as PhyB, help plants sense and respond to the world around them by influencing life-sustaining processes such as shade avoidance, seed germination, determination of flowering time, and development of chloroplasts, which convert light into usable energy,” said VAI Professor Huilin Li, Ph.D., co-corresponding author of the study. “Our new structure sheds light onto how PhyB works and has potential for a host of applications in agriculture, renewable energy and even in cellular imaging.”

Understanding the shape of PhyB is important because its structure directly impacts how PhyB interacts with other molecules to communicate shifts in light conditions and to help plants adapt by driving changes in gene expression. Previous research on PhyB provided only a truncated snapshot rather than a detailed rendering of the entire molecule.

To determine their near-atomic resolution image of PhyB, Li and study co-corresponding author Richard D. Vierstra, Ph.D., of Washington University, turned to one of the most studied plants on Earth — a humble weed called Arabidopsis thaliana. This small flowering plant is an ideal model for research because it reproduces quickly, is small and is easy to grow.

Using VAI’s high-powered cryo-electron microscope, or cryo-EM, the research team snapped nearly 1 million particle images of PhyB connected to its natural chromophore — a molecule that absorbs a certain color of light. They then narrowed the images down to 155,000, which they used to construct the full visualization of PhyB’s structure at a near-atomic level of 3.3 Ångstrom. Their work revealed a surprise: rather than the parallel structure described by earlier studies, they found a complicated 3D structure with both parallel and anti-parallel sections. The findings suggest that PhyB may amplify small changes in light-sensing chromophore molecules and drastically change its shape in response — a move that communicates the availability of light to the plant.  

The discovery is the result of more than a decade of collaboration between Li and Vierstra, and revolutionizes what we know about PhyB and phytochromes, the family of receptors to which PhyB belongs. Until now, it was believed that PhyB and other phytochromes likely were similar to those used by single-celled organisms, such as certain bacteria. Today’s findings upend that theory and lay the foundations for further studies into the intricate details of PhyB and phytochrome function.  

Hua Li, Ph.D., of VAI and Sethe Burgie, Ph.D., of Washington University are co-first authors of the study. Zachary T.K. Gannam, Ph.D., of Washington University also is an author. Cryo-EM data were collected in collaboration with VAI’s Cryo-EM Core and the David Van Andel Advanced Cryo-Electron Microscopy Suite.

Research reported in this publication was supported by Van Andel Institute (Li), Washington University (Vierstra) and the National Institute of General Medical Sciences of the National Institutes of Health under award nos. R01GM127892 (Vierstra) and R35GM131754 (Li). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

 

###

ABOUT VAN ANDEL INSTITUTE

Van Andel Institute (VAI) is committed to improving the health and enhancing the lives of current and future generations through cutting edge biomedical research and innovative educational offerings. Established in Grand Rapids, Michigan, in 1996 by the Van Andel family, VAI is now home to almost 500 scientists, educators and support staff, who work with a growing number of national and international collaborators to foster discovery. The Institute’s scientists study the origins of cancer, Parkinson’s and other diseases and translate their findings into breakthrough prevention and treatment strategies. Our educators develop inquiry-based approaches for K-12 education to help students and teachers prepare the next generation of problem-solvers, while our Graduate School offers a rigorous, research-intensive Ph.D. program in molecular and cellular biology. Learn more at vai.org.



Journal

Nature

DOI

10.1038/s41586-022-04529-z

Method of Research

Experimental study

Article Title

Plant Phytochromes are Asymmetric Dimers with Unique Signaling Potential

Article Publication Date

30-Mar-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Exercise Increases Dopamine Release in Mice

Exercise increases dopamine release in mice

May 16, 2022
Neurulation

Precursor of spine and brain forms passively

May 16, 2022

Amazon deforestation threatens newly discovered fish species in Brazil

May 16, 2022

Arcadia Fund supports Plazi in its endeavor to rediscover known biodiversity

May 16, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVirologyWeather/StormsUrbanizationWeaponryUniversity of WashingtonVaccinesUrogenital SystemVirusZoology/Veterinary ScienceVaccineVehicles

Recent Posts

  • New theory promises to reshape how we think about polymer superstructures
  • Shaping the future of light through reconfigurable metasurfaces
  • Researchers reveal moral distress impact, actions to support doctors during pandemic
  • Exercise increases dopamine release in mice
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....