• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Molecular basis underlying colorectal cancer revealed

Bioengineer by Bioengineer
September 15, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tadasuke Tsukiyama, et al., Nature Communications, September 15, 2020

A team of scientists has unraveled the molecular mechanism behind one of the causes of colorectal cancer, and a treatment target.

The Wnt signaling pathway is a cell signaling pathway that promotes cell proliferation and is essential for the development and optimal function of cells and tissues in many organisms. Many molecules are involved in the regulation of this pathway; a mutation in the molecules could lead to cancer. RNF43 is such a molecule, a protein that is found in the cell membrane of intestinal stem cells (ISCs). It functions as a negative regulator of the Wnt signaling pathway, and mutations of RNF43 are commonly found in colorectal cancer. However, the mechanisms by which RNF43 mutations cause cancer were not fully elucidated.

In an extensive series of experiments, a team of scientists, including Tadasuke Tsukiyama from the Faculty of Medicine at Hokkaido University, has described a molecular mechanism by which mutations at one site in RNF43 cause cancer – and have also described a potential method to treat these cancers. Their findings were published in the journal Nature Communications.

They first identified the exact region of RNF43 in which mutations lead to activate Wnt signaling. From experiments with induced mutations, they found that some serine residues in RNF43 must be modified with phosphate (phosphorylated) in order to become functional. Mutations which block phosphorylation in RNF43 lead to cancer. They designed RNF43 mutants which had properties similar to phosphorylated RNF43. These mutants retained their function, confirming their hypothesis.

In a normal cell, RNF43 negatively regulates Wnt signaling pathway by initiating the degradation of the receptor for Wnt. When RNF43 mutates into oncogenic RNF43, it can no longer downregulate Wnt signaling. Furthermore, the group found that the oncogenic RNF43 cooperates with active Ras, another oncogene, to induce tumors. This was verified in mice models as well as in cellular experiments. From this information, the scientists analyzed data from colorectal cancer collected from The Cancer Genome Atlas (TCGA) and identified that mutant RNF43 works with Ras to induce tumorigenesis in humans, as well. Interestingly, other experiments by the group suggested that further expression of oncogenic RNF43 was induced by positive feedback of the Wnt signaling pathway, which accelerates RNF43’s suppressive role on anti-cancer gene p53.

A separate question the scientists addressed was the role of normal and mutant RNF43 in other species. In experiments conducted on zebrafish embryos and mouse intestinal organoid models, they demonstrated that phosphoregulation of RNF43 plays a key role in the morphogenesis and the maintenance of ISCs, confirming the conserved role of this regulation.

The scientists concluded that modification of RNF43 phospho-status to maintain its function may be a potential treatment for some types of colorectal cancer. What remains to be understood is the exact role different RNF43 mutations play in cancer. To do this at a useful scale, it is important to collect more detailed molecular data from patients recorded in TCGA.

Assistant Professor Tadasuke Tsukiyama from the Department of Biochemistry, Faculty of Medicine at Hokkaido University studies the development of cancer using cell lines and zebrafish, mouse organoid and mouse allograft models. He is especially interested in how aberrations in the signal transduction pathways lead to cancer.

###

Media Contact
Sohail Keegan Pinto
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/molecular-basis-underlying-colorectal-cancer-revealed/

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-18257-3

Tags: BiochemistryBiologyBiotechnologycancerCell BiologyGastroenterologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Wearable Devices Improve Parkinson’s Medication Adjustments: Trial

Wearable Devices Improve Parkinson’s Medication Adjustments: Trial

August 21, 2025
How Cancer Affects the Accuracy of Forensic DNA Methylation Age Estimation

How Cancer Affects the Accuracy of Forensic DNA Methylation Age Estimation

August 21, 2025

STING Triggers ZBP1 Necroptosis Without TNFR1

August 21, 2025

Toxoplasma, IL-1 Cause DNA Damage, Cognitive Decline

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal and Infant Gut Microbiota Linked to Infant Respiratory Infections

Wearable Devices Improve Parkinson’s Medication Adjustments: Trial

Beijing Tiantan Hospital Researchers Develop Innovative One-Stage Hybrid Surgery for Brain and Spine Tumors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.