• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Molecular atlas of postnatal mouse heart development

Bioengineer by Bioengineer
October 15, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jaakko Teppo / University of Helsinki

Myocardial infarction (MI) is one of the most common causes of death in the Western world. Typically, MI is caused by the blockage of a coronary artery by an atherosclerotic plaque: as the oxygen supply of the heart drops, cell death occurs.

If the patient is hospitalized and the oxygen supply of the heart restored in time, the infarcted area is replaced by scar tissue, which impairs the pumping action of the heart. Consequently, heart failure develops.

The goal of the research group of Professor Heikki Ruskoaho from the University of Helsinki (Drug Research Program, Faculty of Pharmacy) is to induce regeneration, the growth of functional tissue, in the infarcted heart. In most tissues of adult mammals, including the heart, regeneration is very limited. In earlier studies it has been shown that neonatal mouse hearts are capable of regeneration until the age of seven days.

"We were interested in the biochemical processes and cellular signaling cascades responsible for the preservation or loss of the regenerative capacity. The ultimate goal is to develop drugs for reducing the damage caused by an MI", Ruskoaho explains.

The researchers analyzed the levels of transcripts, proteins, and metabolites from the hearts of mice of different ages. The result is a comprehensive molecular atlas of the changes occurring in the mouse heart in the first postnatal weeks. Both previously reported and novel changes were observed: e.g. the temporal regulation of mevalonate and ketone body metabolism in the postnatal heart has not been previously described.

"All of the data has been uploaded in public data repositories for open use. We believe that the information provided by us will be used and further refined widely in both academic and industrial pharmaceutical research", Ruskoaho states.

###

The research was conducted as a part of the 3iRegeneration project and published in the Journal of The American Heart Association. In addition to Ruskoaho's group, the research teams of Risto Kostiainen (Drug Research Program, Faculty of Pharmacy) and Markku Varjosalo (HiLIFE, Institute of Biotechnology) from the University of Helsinki, and researchers from University of Turku and Steno Diabetes Center Copenhagen, participated in the study.

The research was funded by University of Helsinki, Business Finland, Sigrid Juselius foundation, and the Finnish Foundation for Cardiovascular Research.

Media Contact

Heikki Ruskoaho
[email protected]
358-504-480-772
@helsinkiuni

http://www.helsinki.fi/university/

Original Source

https://www.helsinki.fi/en/news/health-news/molecular-atlas-of-postnatal-mouse-heart-development-a-comprehensive-resource-for-cardiac-regenerative-medicine http://dx.doi.org/10.1161/JAHA.118.010378

Share12Tweet7Share2ShareShareShare1

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.