• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, February 8, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Model calculates energetics of piercing fangs, claws and other biological weapons

Bioengineer by Bioengineer
October 19, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAMPAIGN, Ill. — Researchers have created a model that can calculate the energetics involved when one organism stabs another with its fangs, thorns, spines or other puncturing parts. Because the model can be applied to a variety of organisms, it will help scientists study and compare many types of biological puncturing tools, researchers said. It also will help engineers develop new systems to efficiently pierce materials or resist being pierced.

Viper skull

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — Researchers have created a model that can calculate the energetics involved when one organism stabs another with its fangs, thorns, spines or other puncturing parts. Because the model can be applied to a variety of organisms, it will help scientists study and compare many types of biological puncturing tools, researchers said. It also will help engineers develop new systems to efficiently pierce materials or resist being pierced.

The new findings are reported in the Journal of the Royal Society Interface.

“The idea behind this was to come up with a quantitative framework for comparing a variety of biological puncture systems with each other,” said Philip Anderson, a University of Illinois Urbana-Champaign professor of evolution, ecology and behavior who led the research with postdoctoral researcher Bingyang Zhang. “An initial question of this research was how do we even measure these different systems to make them comparable.”

“It’s a challenging problem to predict the properties of biological systems,” Zhang said.

Animals and plants deploy a variety of strategies for stabbing prey or defending themselves from other organisms, and even those that use similar strategies or tools alter those tools to meet their specific needs, the researchers said. Their targets also differ.

“In vipers, for example, some bite mammals, which means they must puncture through soft tissues encased in skin, while others target reptiles, which have scales, making them stiffer and harder to pierce,” said Anderson, who studies the mechanics and energetics of biological puncturing systems.

Other organisms, like parasitoid wasps, may use their ovipositors to burrow through the hides of caterpillars but also can penetrate fruit or even wood, he said.

To develop a model that can be applied to a variety of systems, Zhang determined the key factors that must be included in any calculations of the energetics involved. These include changes in the kinetic energy as the puncturing tool is used, but also take into account the material properties of the target tissue.

This involves calculations describing how the initial kinetic energy drives a puncturing tool into a material, opening up new surfaces in the material as the fracture propagates. It also takes into consideration the frictional resistance and elasticity of the target tissue.

The calculations were aimed at tapered puncturing tools, which are common in biological systems, the researchers said.

Anderson is deploying the new model to aid his studies of puncturing organisms like viper fangs, stingray spines and parasitoid wasp ovipositors.  

“If we know the morphology or the shape of the damage created by a puncture tool, we can use this model to predict how much energy was expended during a puncture scenario,” Zhang said. “Or we can predict different aspects of the material’s property, for example, how it will fracture, which will be useful in both engineering and biological applications.”

The National Science Foundation supports this research.

Editor’s notes: 

 

To reach Philip Anderson, email [email protected]

 

To reach Bingyang Zhang, email [email protected]
 

The paper “Modeling biological puncture: A mathematical framework for determining the energetics and scaling” is available online and from the U. of I. News Bureau.

DOI: 10.1098/rsif.2022.0559

 



Journal

Journal of The Royal Society Interface

DOI

10.1098/rsif.2022.0559

Method of Research

Computational simulation/modeling

Subject of Research

Animals

Article Title

Modeling biological puncture: A mathematical framework for determining the energetics and scaling

Article Publication Date

18-Oct-2022

COI Statement

We declare we have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Image 1. Monthly average size of TM and TM-Sidhi group 2002–2016 at Maharishi International University

New study: Group practice of transcendental meditation may help decrease drug-overdose deaths

February 7, 2023
Kenneth T. Kishida, Ph.D. and Brittany Liebenow

Scientists report differences in dopamine signals in patients with history of alcohol use disorder

February 7, 2023

WVU study shows number of West Virginia infants exposed to drugs in the womb is 10 times higher than national rate

February 7, 2023

Uncovering sexual health topics for parents to address with their adolescent-aged GBQ male children

February 7, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    66 shares
    Share 26 Tweet 17
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9
  • Duke-NUS and NHCS scientists first in the world to regenerate diseased kidney

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Size of X-Ray beams successfully evaluated with mathematics

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

Immunaeon joins the RegenMed Hub

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In