• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Minimizing thermal conductivity of crystalline material with optimal nanostructure

Bioengineer by Bioengineer
June 12, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Towards application of materials informatics to development of thermal functional materials

IMAGE

Credit: The University of Tokyo

Professor Junichiro Shiomi et al. from The University of Tokyo aimed to reduce the thermal conductivity of semiconductor materials by reducing the internal nanostructure, and successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation. In 2017, this research group developed a method to design an optimal structure that minimizes or maximizes thermal conductivity via MI based on computational science. However, it has not been experimentally demonstrated, and preparation of nano-scale structures and realization of an optimal structure based on property measurements were desired.

Thus, the research group utilized a film deposition method able to regulate, at a molecular level, a superlattice structure wherein two materials were alternately layered at several nm thick, and a measurement method that could assess thermal conductivity of a film at nano-scale, and realized the optimal aperiodic superlattice structure that minimizes thermal conductivity. With the optimal structure, wave interference of the lattice vibration (phonon) that conducts heat was maximized, and thermal conductivity was strongly regulated.

In the present study, using the semiconductor lattice structure as the model, the research group verified the utility of the MI method in design, fabrication, assessment, and mechanism elucidation toward regulation of thermal conductivity. In the future, application of the MI method to various material systems is anticipated. It was also shown that optimization of the aperiodic structure can regulate thermal conductivity by fully controlling the wave property of a phonon at near room temperature. This is expected to contribute to developments in phonon engineering for instance in thermoelectric conversion devices, optical sensors, and gas sensors, where low thermal conductivity is needed while maintaining electric conductivity and mechanical properties.

###

The research was conducted as part of the JST Strategic Basic Research Programs (CREST): the research theme of “Development of multifunctional and purpose thermoelectric device by mechano-thermal functionalization” under the research area of “Scientific Innovation for Energy Harvesting Technology.”

Media Contact
Junichiro Shiomi
[email protected]

Original Source

https://www.jst.go.jp/pr/announce/20200603-3/index_e.html

Related Journal Article

http://dx.doi.org/10.1103/PhysRevX.10.021050

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carbon Fiber Boosts Zirconium Diboride in 3D Printing

Revolutionary Support Program for Families of Cancer Patients

Spatial Multiomics Uncovers Immune Dysfunction in Parkinson’s, IBD

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.