• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, May 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mind the gap: Space inside eggs steers first few steps of life

Bioengineer by Bioengineer
May 12, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Imagine sitting at a meeting where the shape of the table and your place at it might impact how you get along with the other members. Cells also communicate with their nearest neighbors, and in embryos, nothing is left to chance in the ‘seating plan’ for the first few cells. However, questions remain about the how this process is controlled and how it can influence the overall growth of an organism.

Mind the gap: Space inside eggs steers first few steps of life

Credit: Kyoto University/Sungrim Seirin-Lee

Imagine sitting at a meeting where the shape of the table and your place at it might impact how you get along with the other members. Cells also communicate with their nearest neighbors, and in embryos, nothing is left to chance in the ‘seating plan’ for the first few cells. However, questions remain about the how this process is controlled and how it can influence the overall growth of an organism.

Building on their previous studies on the development of worm eggs, researchers from Kyoto University Kanagawa Institute of Technology, and the National Institute of Genetics have now precisely modeled the shape of eggshells to show how the space in the egg and the contours of the shell direct the relative positions of cells in the growing embryo. Their findings may provide a theoretical basis for directing the development of stem cells into larger tissues and organs.

Lead author Professor Sungrim Seirin-Lee of Kyoto University’s Institute for the Advanced Study of Human Biology (WPI-ASHBi) said, “We had found that when Caenorhabditis elegans embryos reached the 4-cell stage, there are five patterns that the cells arrange themselves in the spaces of the egg. But the T-reverse arrangements we found did not match our previous calculations based on the attraction of the cells and the aspect ratio of the eggs. We realized something was missing from our model.”

When looking under a microscope at eggs of the worm Caenorhabditis elegans, the team previously noticed that in eggs with a longer shape, the first four cells arranged in a line; in contrast, if the shell was round, the cells would bunch up. They also identified an unexplained ‘T-reverse’ pattern in some eggs, where three cells bunch up, making a gap shaped like a T, with one cell in a line at the end.

The team hypothesized that the formation of this pattern, might be controlled by variations in the eggshell contours. To test this, they applied a more sophisticated ‘phase-field’ mathematical model that could more precisely account for the actual egg shape measured from worms. This new model successfully reproduced the previous findings and now also accounts for the unexplained T-reverse arrangement. The findings show for the first time that the previously ignored local contours of the egg affect the cell patterns.

In the new way of looking at the embryo, it turns out that it is actually the “space inside the egg” that is a key factor driving the cell patterns. To test this concept further, the researchers examined the eggs of worms that were genetically modified to allow more space for the cells inside. With extra room, the first four cells preferred to spread out in a line rather than bunching up.

Seirin-Lee said, “Worm eggshells are often treated as a simple oval shape but the actual shape may be closer to a capsule in some cases. We now understand how important geometric constraints and space are for directing cells, and this concept also applies to human cells. We hope this work will lead us to a better handle on artificially controlling cell differentiation and extend the capabilities of stem cell techniques.”

The paper “The extra-embryonic space and the local contour are critical geometric constraints regulating cell arrangement” was published on 12 May, 2022 in the journal Development.

******************

About WPI-ASHBi https://ashbi.kyoto-u.ac.jp/
Institute for the Advanced Study of Human Biology (ASHBi) was launched in October 2018 with funding from the World Premier International Research Center Initiative (WPI) Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The Institute inaugurated with 18 principal investigators (PIs) to create and promote human biology to elucidate key principles of human traits, including disease states. The Institute will perform interdisciplinary research between biology and mathematics (machine learning and topological data analysis) and between biology and humanities/social sciences (bioethics and philosophy on life), respectively. The Institute implements three research development cores for cutting-edge single-cell genome information analysis, primate genome editing, and non-human primate phenotype analysis, respectively. The Institute establishes a link with international institutions such as the EMBL, University of Cambridge, and Karolinska Institutet, creating a stratified organization for research promotion and strengthening its international profile.



Journal

Development

DOI

10.1242/dev.200401

Method of Research

Computational simulation/modeling

Subject of Research

Human embryos

Article Title

The extra-embryonic space and the local contour are critical geometric constraints regulating cell arrangement

Article Publication Date

12-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

The bird skin collection of the Zoological Museum of Babeș Bolyai University

Learning more about bird diversity: What a museum collection in Romania can tell us

May 20, 2022
Image of central-nervous-system-associated macrophages in the brain

Uncovering new details of the brain’s first line of defense

May 20, 2022

Snake trade in Indonesia is not sustainable enough — but it could be

May 20, 2022

Dietary cholesterol worsens inflammation, sickness in mice with influenza

May 19, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonZoology/Veterinary ScienceWeather/StormsVaccineVehiclesVirusVirologyViolence/CriminalsWeaponryUrbanizationVaccinesUrogenital System

Recent Posts

  • Topography and soil pH steer the activity-density and spatial distribution of termites in a fine-scale study
  • Surprising turbulence
  • Electrons in a crystal exhibit linked and knotted quantum twists
  • Designers find better solutions with computer assistance, but sacrifice creative touch
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....