• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Microscopy technique reveals nanoscale detail of coatings as they dry

Bioengineer by Bioengineer
July 10, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In paper published in Scientific Reports, Lehigh University researchers studying in situ drying behavior of thin film coatings visualize interactions that could impact drug delivery technology

IMAGE

Credit: Kaewpetch, T., Gilchrist, J.F./Lehigh University

Dull. Slow. Unchanging. Like watching paint dry. 

But take a closer look at that paint–all the way down to the nanoscale–and there’s a lot more going on than you might think.  

Researchers in the Gilchrist Laboratory in Lehigh University’s P.C. Rossin College of Engineering and Applied Science are observing the evolution of coatings as they dry with groundbreaking microscale precision. Their results were recently published in Scientific Reports. 

Thin film coatings do much more than spruce up walls. For example, they can be used as pharmaceutical devices in edible films, similar to those to deliver drugs used to fight the opioid epidemic. How these coatings dry can change their properties, which is especially important for films used in drug delivery. 

In their paper, “Chemical vs. mechanical microstructure evolution in drying colloid and polymer coatings,” the Lehigh researchers looked at how particles rearrange themselves during drying when their interactions are tuned. These particles behaved as a surrogate for the active pharmaceutical ingredient in a drug delivery film.

Graduate student Titiporn Kaewpetch looks directly inside these films using high speed confocal laser scanning microscopy to take thousands of images that give nanoscale details of how particles flow and assemble during drying. Gigabytes of data for each film are rendered to reveal their 3-D structure, giving simulation-like detail on the otherwise hidden internal processes that happen. 

The researchers found that when particles attract each other, they form a scaffold that buckles and breaks during drying due to the motion of the top interface. “The microstructure for attractive particles at each point during drying is related to the history of the film evolution,” says James Gilchrist, a professor in the Department of Chemical and Biomolecular Engineering. Their 3-D analysis of the microstructure evolution reveals clear signatures of this process throughout drying as compared with those where particles are repulsive.

“In real drug delivery systems, there are many ingredients interacting with each other, always changing concentration and their interactions throughout drying,” says Gilchrist. “By reducing this process to the essential ingredients, we can see these interactions as they happen. This may allow new insights into manufacturing of these films.”

This paper is based upon work supported by the National Science Foundation (grant No. 1936541). Kaewpetch is supported by the Royal Thai Scholars program.

Related Links:

  • Laboratory for Particle Mixing and Self- Organization (Gilchrist Laboratory)
  • Scientific Reports: “Chemical vs. mechanical microstructure evolution in drying colloid and polymer coatings”
  • Rossin College Faculty Profile: James F. Gilchrist

###

Media Contact
Katie Kackenmeister
[email protected]

Original Source

https://engineering.lehigh.edu/news/article/microscopy-technique-reveals-nanoscale-detail-coatings-they-dry

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-66875-0

Tags: Atomic/Molecular/Particle PhysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPharmaceutical SciencePharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Predicting Glioma Response to Chemoradiation

Predicting Glioma Response to Chemoradiation

August 3, 2025
blank

Flexible Eddy Current Arrays Detect Cracks in Steel

August 3, 2025

CagriSema Promotes Rat Weight Loss by Balancing Energy

August 3, 2025

NSUN5 Drives Liver Cancer via m5C-EFNA3 Glycolysis

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Glioma Response to Chemoradiation

Flexible Eddy Current Arrays Detect Cracks in Steel

CagriSema Promotes Rat Weight Loss by Balancing Energy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.