• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Microscopy technique reveals nanoscale detail of coatings as they dry

Bioengineer by Bioengineer
July 10, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In paper published in Scientific Reports, Lehigh University researchers studying in situ drying behavior of thin film coatings visualize interactions that could impact drug delivery technology

IMAGE

Credit: Kaewpetch, T., Gilchrist, J.F./Lehigh University

Dull. Slow. Unchanging. Like watching paint dry. 

But take a closer look at that paint–all the way down to the nanoscale–and there’s a lot more going on than you might think.  

Researchers in the Gilchrist Laboratory in Lehigh University’s P.C. Rossin College of Engineering and Applied Science are observing the evolution of coatings as they dry with groundbreaking microscale precision. Their results were recently published in Scientific Reports. 

Thin film coatings do much more than spruce up walls. For example, they can be used as pharmaceutical devices in edible films, similar to those to deliver drugs used to fight the opioid epidemic. How these coatings dry can change their properties, which is especially important for films used in drug delivery. 

In their paper, “Chemical vs. mechanical microstructure evolution in drying colloid and polymer coatings,” the Lehigh researchers looked at how particles rearrange themselves during drying when their interactions are tuned. These particles behaved as a surrogate for the active pharmaceutical ingredient in a drug delivery film.

Graduate student Titiporn Kaewpetch looks directly inside these films using high speed confocal laser scanning microscopy to take thousands of images that give nanoscale details of how particles flow and assemble during drying. Gigabytes of data for each film are rendered to reveal their 3-D structure, giving simulation-like detail on the otherwise hidden internal processes that happen. 

The researchers found that when particles attract each other, they form a scaffold that buckles and breaks during drying due to the motion of the top interface. “The microstructure for attractive particles at each point during drying is related to the history of the film evolution,” says James Gilchrist, a professor in the Department of Chemical and Biomolecular Engineering. Their 3-D analysis of the microstructure evolution reveals clear signatures of this process throughout drying as compared with those where particles are repulsive.

“In real drug delivery systems, there are many ingredients interacting with each other, always changing concentration and their interactions throughout drying,” says Gilchrist. “By reducing this process to the essential ingredients, we can see these interactions as they happen. This may allow new insights into manufacturing of these films.”

This paper is based upon work supported by the National Science Foundation (grant No. 1936541). Kaewpetch is supported by the Royal Thai Scholars program.

Related Links:

  • Laboratory for Particle Mixing and Self- Organization (Gilchrist Laboratory)
  • Scientific Reports: “Chemical vs. mechanical microstructure evolution in drying colloid and polymer coatings”
  • Rossin College Faculty Profile: James F. Gilchrist

###

Media Contact
Katie Kackenmeister
[email protected]

Original Source

https://engineering.lehigh.edu/news/article/microscopy-technique-reveals-nanoscale-detail-coatings-they-dry

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-66875-0

Tags: Atomic/Molecular/Particle PhysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPharmaceutical SciencePharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

High BMI Linked to Increased Glycated Albumin Levels

November 5, 2025

[6]-Shogaol Inhibits 3CLpro and SARS-CoV-2 Infection

November 5, 2025

Psychological Factors Influencing Nursing Students’ Success

November 5, 2025

Reassessing AMH’s Impact in DHEA PCOS Research

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High BMI Linked to Increased Glycated Albumin Levels

[6]-Shogaol Inhibits 3CLpro and SARS-CoV-2 Infection

Psychological Factors Influencing Nursing Students’ Success

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.