• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, August 14, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Microscopy technique enables 3D super-resolution nanometre-scale imaging

Bioengineer by Bioengineer
June 24, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over the last two decades, microscopy has seen unprecedented advances in speed and resolution. However, cellular structures are essentially three-dimensional, and conventional super-resolution techniques often lack the necessary resolution in all three directions to capture details at a nanometer scale. A research team led by Göttingen University, including the University of Würzburg and the Center for Cancer Research in the US, investigated a super-resolution imaging technique that involves combining the advantages of two different methods to achieve the same resolution in all three dimensions; this is “isotropic” resolution. The results were published in Science Advances.

Microscopy technique enables 3D super-resolution nanometre-scale imaging

Credit: Alexey Chizhik

Over the last two decades, microscopy has seen unprecedented advances in speed and resolution. However, cellular structures are essentially three-dimensional, and conventional super-resolution techniques often lack the necessary resolution in all three directions to capture details at a nanometer scale. A research team led by Göttingen University, including the University of Würzburg and the Center for Cancer Research in the US, investigated a super-resolution imaging technique that involves combining the advantages of two different methods to achieve the same resolution in all three dimensions; this is “isotropic” resolution. The results were published in Science Advances.

 

Despite tremendous improvements in microscopy, there still exists a remarkable gap between resolution in all three dimensions. One of the methods that can close this gap and achieves a resolution in the nanometer range is metal-induced energy transfer (MIET) imaging. The exceptional depth resolution of MIET imaging was combined with the extraordinary lateral resolution of single-molecule localization microscopy, in particular with a method called direct stochastic optical reconstruction microscopy (dSTORM). The novel technique based on this combination allows researchers to achieve isotropic three-dimensional super-resolution imaging of sub-cellular structures. In addition, the researchers implement dual-color MIET-dSTORM enabling them to image two different cellular structures in three dimensions, for example microtubules and clathrin coated pits – tiny structures within cells – that exist together in the same area.

 

“By combining the established concepts, we developed a new technique for super-resolution microscopy. Its main advantage is it enables extremely high resolution in three dimensions, despite using a relatively simple setup,” says Dr Jan Christoph Thiele, first author of the publication, Göttingen University. “This will be a powerful tool with numerous applications to resolve protein complexes and small organelles with sub-nanometer accuracy. Everyone who has access to confocal microscope technology with a fast laser scanner and fluorescence lifetime measurements capabilities should try this technique,” says Dr Oleksii Nevskyi, one of the corresponding authors.

 

“The beauty of the technique is its simplicity. This means that researchers around the world will be able to implement the technology into their microscopes quickly,” adds Professor Jörg Enderlein who led the research team at the Biophysics Institute, Göttingen University. This method shows promise to become a powerful tool for multiplexed 3D super-resolution microscopy with extraordinary high resolution and a variety of applications in structural biology.

 

Original publication: Thiele et al, Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer, Science Advances 2022.  DOI: 10.1126/sciadv.abo2506

Contact:

Professor Jörg Enderlein
University of Göttingen
Third Institute of Physics – Biophysics
Friedrich-Hund-Platz 1, 37077 Göttingen
Tel: +49 551 39 26908

Email: [email protected]

https://www.joerg-enderlein.de/

 

Dr Oleksii Nevskyi

University of Göttingen

Third Institute of Physics – Biophysics

Friedrich-Hund-Platz 1
37077 Göttingen

Tel.: +49 551 39 22297

Email: [email protected]ngen.de

https://www.joerg-enderlein.de/galerie

 

Dr Jan Christoph Thiele

University of Göttingen

Third Institute of Physics – Biophysics

Friedrich-Hund-Platz 1
37077 Göttingen

Tel.: +49 551 39 26909

Email: [email protected]

https://www.joerg-enderlein.de/galerie

 

 

 

 



Journal

Science Advances

Method of Research

Imaging analysis

Subject of Research

Not applicable

Article Title

Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer

Article Publication Date

8-Jun-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Kratofil microscope 2021

Snyder Institute researchers discover new approach to healing skin infections and wounds

August 12, 2022
Adhesive hydrogel

Using sound and bubbles to make bandages stickier and longer lasting

August 12, 2022

Pralsetinib achieves tissue-agnostic benefits for patients with RET gene fusions

August 12, 2022

The circadian clock makes sure plant cells have the time of their lives

August 12, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonWeather/StormsZoology/Veterinary ScienceUrbanizationVehiclesVirologyVirusWeaponryViolence/CriminalsVaccineVaccinesUrogenital System

Recent Posts

  • Experimental verification on steering flight of honeybee by electrical stimulation
  • UTA researcher explores integration and power electronic regulation of batteries for Navy
  • Bug eyes and bat sonar: UCLA bioengineers turn to animal kingdom for creation of bionic super 3D cameras
  • Overcoming a major manufacturing constraint
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In