• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

MicroRNAs: Biological indicators of the physiological status of animals

Bioengineer by Bioengineer
December 10, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Known to be fine regulators of gene expression, microRNAs are small molecules that remain particularly stable in biofluids—blood, urine, etc. In humans, these molecules have revealed great potential as prognostic or diagnostic tools for many diseases such as various cancers, strokes, and, particularly, heart attacks. However, few studies have been carried out on their potential as non-invasive biomarkers in animals, either for disease control or as a tool to assess their physiological status. This lack of information is particularly noticeable in cold-blooded aquatic species, whose physiological status is directly affected by environmental fluctuations, both in the wild and on farms. For this reason, specialists in fish reproduction and nutrition at INRAE, in collaboration with an American team from the University of Oregon, decided to conduct a study to evaluate the potential of circulating microRNAs as biomarkers of the metabolic or reproductive state of fish.

Fish

Credit: Pixabay

Known to be fine regulators of gene expression, microRNAs are small molecules that remain particularly stable in biofluids—blood, urine, etc. In humans, these molecules have revealed great potential as prognostic or diagnostic tools for many diseases such as various cancers, strokes, and, particularly, heart attacks. However, few studies have been carried out on their potential as non-invasive biomarkers in animals, either for disease control or as a tool to assess their physiological status. This lack of information is particularly noticeable in cold-blooded aquatic species, whose physiological status is directly affected by environmental fluctuations, both in the wild and on farms. For this reason, specialists in fish reproduction and nutrition at INRAE, in collaboration with an American team from the University of Oregon, decided to conduct a study to evaluate the potential of circulating microRNAs as biomarkers of the metabolic or reproductive state of fish.

 

The team conducted their work on rainbow trout—the predominant fish species in French aquaculture—by first establishing a comprehensive sequence annotation of expressed microRNAs in the species. Then, they used a simple blood sample to carry out PCR analyses—a genetic analysis method used here to identify and measure microRNAs—which enabled them to identify microRNAs showing major changes in abundance, depending on the physiological status of the animal. Most notably, they characterised a microRNA that could detect, and even predict, ovulation and egg quality in fish. The researchers were also able to identify a growth signature, since their results showed an over-abundance of some specific microRNAs, called myomiRs, under conditions of high fish growth. MyomiRs are actually known to be involved in high episodes of muscle growth in many other animals as well.

This innovative study opens up great possibilities, since non-invasive biomarkers—accessible from a simple blood test and quantifiable by PCR—could not only avoid costly and time-consuming experimental procedures, but also facilitate access to valuable information on the physiological or pathological state of living animals. Their results might also lead to the development of a wide range of applications to monitor the physiological state of animals, both for researchers and veterinary specialists. In the future, thanks to the identification of generic biomarkers like myomiRs—which are present in many animal species—similar studies might be carried out for other species.



Journal

BMC Biology

DOI

10.1186/s12915-021-01163-5

Article Title

Circulating miRNA repertoire as a biomarker of metabolic and reproductive states in raindow trout

Article Publication Date

16-Nov-2021

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring VOZ Gene Family’s Role in Cotton Heat Stress

August 31, 2025

Cortisol’s Role in Animal Stereotypies: Help or Harm?

August 31, 2025

Potential Biomarkers: CircRNA_0001412 and CircRNA_0001566 in Rheumatoid Arthritis

August 31, 2025

Pet Guardianship and Health: Australian Study Insights

August 31, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Portable Bioprinters: Innovations in Dental Bioprinting

Diabetes Screening Insights for Women in Lesotho

Insights on Insulin Dosing from Germans with Diabetes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.