• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 18, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

MicroQuin to launch cancer research to space station on Northrop Grumman CRS-17

Bioengineer by Bioengineer
February 18, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An investigation from biotechnology startup MicroQuin launching to the International Space Station (ISS) on Northrop Grumman’s 17th Commercial Resupply Services (CRS) aims to better understand the onset and progression of cancer. The project will use 3D cell culture to examine cell signaling pathways involved in tumorigenesis (the process by which normal cells transform into cancer cells). MicroQuin will also observe how cancer cells respond to a new cancer therapeutic the company has developed.

MicroQuin to Launch Cancer Research on Northrop Grumman CRS-17

Credit: Image courtesy of Ivan Castro

An investigation from biotechnology startup MicroQuin launching to the International Space Station (ISS) on Northrop Grumman’s 17th Commercial Resupply Services (CRS) aims to better understand the onset and progression of cancer. The project will use 3D cell culture to examine cell signaling pathways involved in tumorigenesis (the process by which normal cells transform into cancer cells). MicroQuin will also observe how cancer cells respond to a new cancer therapeutic the company has developed.

MicroQuin was awarded a grant for this project through the Technology in Space Prize, funded by Boeing and the Center for the Advancement of Science in Space, Inc., manager of the ISS National Laboratory, in partnership with the MassChallenge startup accelerator program.

The investigation, supported by ISS National Lab Commercial Service Provider BioServe Space Technologies, will use microgravity conditions on the ISS to grow 3D cultures of prostate and breast cancer cells as well as healthy cells. The research team will characterize cell structure, gene expression, and cell signaling in the 3D cultures of the cancer cells in comparison with healthy cells.

Cells behave differently in microgravity, forming 3D structures that more closely resemble the growth and behavior of cells inside the human body. According to Scott Robinson, president and chief science officer of MicroQuin, this type of cell growth is difficult to achieve on Earth, even with the help of scaffolding. The stress of microgravity also induces changes in cell signaling, allowing the research team to study signaling pathways in new ways.

“When you send cells into space, in particular cancer cells, the signaling inside the cells changes considerably,” Robinson said. “These changes occur quite fast, and we don’t really understand exactly what those changes are and what causes them.”

When cells mutate uncontrollably, they turn into cancer cells through a process known as tumorigenesis. By studying cell signaling within cancer cells and healthy cells, MicroQuin hopes to better understand how changes in signaling may lead to cancer development.

“We’re really trying to determine what the key pathways are behind cancer-like development, tumorigenesis, and oncogenesis,” Robinson said. “We think this study will help us understand that a bit better, and ultimately, we will better understand how the environment of the cancer cell changes.”

In their experiment, the research team will examine microgravity-induced changes in the breast and prostate cancer cells compared with each other and compared with healthy cells. The team will also observe how the cancer cells change in response to MicroQuin’s therapeutic, which targets an integral intracellular protein called TMBIM6. This particular protein helps regulate cellular stress, and research indicates that it also plays an essential role in cancer development. “There’s not a single cancer that does not rely on this protein in some way,” Robinson said.

By conducting this investigation in the stressful microgravity environment, the team hopes to better understand exactly what role TMBIM6 proteins play and how they can be used to develop cancer therapies. Results could help MicroQuin refine its cancer therapeutic and develop additional drugs for targeted treatment of breast, prostate, and other cancers.

Northrop Grumman CRS-17 is slated to launch from Wallops Flight Facility no earlier than February 19 at 12:39 p.m. EST. This mission will include more than 15 ISS National Lab-sponsored payloads. To learn more about all ISS National Lab-sponsored research on Northrop Grumman CRS-17, please visit our mission overview page.



Share12Tweet7Share2ShareShareShare1

Related Posts

Schematic illustration of common CLC superstructures and opposite-chirality-coexisted superstructures.

Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures

May 18, 2022
Figure 1

Reliable diagnostics at the tip of your finger

May 18, 2022

Seafloor animal cued to settle, transformed by a bacterial compound

May 18, 2022

Tooth unlocks mystery of Denisovans in Asia

May 18, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsUrbanizationVaccinesVirusWeaponryUrogenital SystemVaccineZoology/Veterinary ScienceViolence/CriminalsVirologyUniversity of WashingtonVehicles

Recent Posts

  • Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures
  • Reliable diagnostics at the tip of your finger
  • Seafloor animal cued to settle, transformed by a bacterial compound
  • Tooth unlocks mystery of Denisovans in Asia
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....