• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Microplastics deposited on the seafloor triple in 20 years

Bioengineer by Bioengineer
December 22, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The total amount of microplastics deposited on the bottom of oceans has tripled in the past two decades with a progression that corresponds to the type and volume of consumption of plastic products by society. This is the main conclusion of a study developed by the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) and the Department of the Built Environment of Aalborg University (AAU-BUILD), which provides the first high-resolution reconstruction of microplastic pollution from sediments obtained in the northwestern Mediterranean Sea.

Campaing

Credit: (Author: Lena Heins).

The total amount of microplastics deposited on the bottom of oceans has tripled in the past two decades with a progression that corresponds to the type and volume of consumption of plastic products by society. This is the main conclusion of a study developed by the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) and the Department of the Built Environment of Aalborg University (AAU-BUILD), which provides the first high-resolution reconstruction of microplastic pollution from sediments obtained in the northwestern Mediterranean Sea.

Despite the seafloor being considered the final sink for microplastics floating on the sea surface, the historical evolution of this pollution source in the sediment compartment, and particularly the sequestration and burial rate of smaller microplastics on the ocean floor, is unknown.

This new study, published in the journal Environmental Science and Technology (ES&T), shows that microplastics are retained unaltered in marine sediments, and that the microplastic mass sequestered in the seafloor mimics the global plastic production from 1965 to 2016. “Specifically, the results show that, since 2000, the amount of plastic particles deposited on the seafloor has tripled and that, far from decreasing, the accumulation has not stopped growing mimicking the production and global use of these materials,” explains ICTA-UAB researcher Laura Simon-Sánchez.

Researchers explains that the sediments analysed have remained unaltered on the seafloor since they were deposited decades ago. “This has allowed us to see how, since the 1980s, but especially in the past two decades, the accumulation of polyethylene and polypropylene particles from packaging, bottles and food films has increased, as well as polyester from synthetic fibres in clothing fabrics,” explains Michael Grelaud, ICTA-UAB researcher. The amount of these three types of particles reaches 1.5mg per kilogram of sediment collected, with polypropylene being the most abundant, followed by polyethylene and polyester. Despite awareness campaigns on the need to reduce single-use plastic, data from annual marine sediment records show that we are still far from achieving this. Policies at the global level in this regard could contribute to improving this serious problem.

Although smaller microplastics are very abundant in the environment, constraints in analytical methods have limited robust evidence on the levels of small microplastics in previous studies targeting marine sediment. In this study they were characterised by applying state-of-the-art imaging to quantify particles down to 11 µm in size.

The degradation status of the buried particles was investigated, and it was found that, once trapped in the seafloor, they no longer degrade, either due to lack of erosion, oxygen, or light. “The process of fragmentation takes place mostly in the beach sediments, on the sea surface or in the water column. Once deposited, degradation is minimal, so plastics from the 1960s remain on the seabed, leaving the signature of human pollution there,” says Patrizia Ziveri, ICREA professor at ICTA-UAB.

The investigated sediment core was collected in November 2019, on board the oceanographic vessel Sarmiento de Gamboa, in an expedition that went from Barcelona to the coast of the Ebro Delta, in Tarragona, Spain. The research group selected the western Mediterranean Sea as a study area, in particular the Ebro Delta, because rivers are recognized as hotspots for several pollutants, including microplastics. In addition, the influx of sediment from the Ebro River provides higher sedimentation rates than in the open ocean.



Journal

Environmental Science & Technology

DOI

10.1021/acs.est.2c04264

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Microplastic preservation in a coastal sedimentary record

Article Publication Date

14-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

World-first guidelines created to help prevent heart complications in children during cancer treatment

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023
Schematic of solar wind charge exchange events.

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

January 28, 2023

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023

A new Assay screening method shows therapeutic promise for treating auto-immune disease

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In