• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Microfossil found in Scottish Highlands could be ‘missing link’ in early animal evolution

Bioengineer by Bioengineer
May 3, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Freshwater fossil displays multicellularity 400 million years earlier than previously established

IMAGE

Credit: P.K. Strother

Chestnut Hill, MA (5/3/2021) — The billion-year-old fossil of an organism, exquisitely preserved in the Scottish Highlands, reveals features of multicellularity nearly 400 million years before the biological trait emerged in the first animals, according to a new report in the journal Current Biology by an international team of researchers, including Boston College paleobotanist Paul K. Strother.

The discovery could be the “missing link” in the evolution of animals, according to the team, which included scientists from the U.S., United Kingdom, and Australia. The microfossil, discovered at Loch Torridon, contains two distinct cell types and could be the earliest example of complex multicellularity ever recorded, according to the researchers.

The fossil offers new insight into the transition of single celled organisms to complex, multicellular animals. Modern single-celled holozoa include the most basal living animals and the fossil discovered shows an organism which lies somewhere between single cell and multicellular animals, or metazoa.

“Our findings show that the genetic underpinnings of cell-to-cell cohesion and segregation — the ability for different cells to sort themselves into separate regions within a multicellular mass — existed in unicellular organisms a billion years ago, some 400 million years before such capabilities were incorporated into the first animals,” said Strother, a research professor in the Department of Earth and Environmental Sciences at Boston College.

The fossil’s discovery in an inland lake shifts the focus on the first forms of early life from the ocean to freshwater.

Animals, or etazoa, are one of only five groups of organisms that have evolved complex multicellularity – organisms that grow from a single cell that develops into a myriad of different cells and tissues. Animals probably evolved from unicellular ancestors that went through multicellular stages during their life cycles, said Strother, an expert in paleobotany and palynology, the study of fossil spores and pollen. Land plants, too, achieved complex multicellularity when they evolved from simpler algal ancestors some time during the early Paleozoic from about 500 to 400 million years ago..

“We describe here a new fossil that is similar to living unicellular relatives of animals, belonging to the group Ichthyosporea,” said Strother. “Our fossil shows life-cycle stages with two different kinds of cells, which could be the first step toward the evolution of complex multicellularity in the evolutionary lineage leading to the Metazoa.”

The study was based on populations of cells preserved in the mineral phosphate that were collected from billion-year-old lake deposits found in the northwest Scottish Highlands, Strother said. Samples are prepared in rock thin sections which allow microfossils to be seen under the light microscope or with a focused ion beam microscope.

The microfossils were discovered as part of an ongoing project to describe life living in freshwater lakes one billion years ago, using samples collected in Scotland and Michigan by Strother beginning in 2008, with support from NASA and the National Geographic Society, and now the Natural Environment Research Council in the UK.

The new fossil has been described and formally named Bicellum brasieri in the new report.

Strother said the discovery has the potential to change the way scientists look at the earliest forms of life on Earth.

“Our study of life in billion-year-old lakes is challenged by our ability to determine which kinds of organisms are represented in these deposits,” he said. “Previously we have assumed that most of what we see in these deposits are various kinds of extinct algae, but the morphological features of Bicellum really are more like those of modern-day unicellular relatives of animals. This is causing us to broaden our approach to reconstructing the diversity and ecology of life on Earth one billion years ago.”

The discovery will allow researchers to expand upon a more thorough reconstruction of the life-cycle of Bicellum, Strother said.

“Armed with comparative morphology with modern day Ichthyosporeans, we may be able to recognize additional morphogenic stages and determine how a single generative cell divides to become a multicellular cell mass,” he said.

###

Media Contact
Ed Hayward
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2021.03.051

Tags: Earth ScienceEvolutionPaleontology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.