• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, June 29, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Microbial space travel on a molecular scale

Bioengineer by Bioengineer
November 4, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How extremophilic bacteria survive in space for one year

IMAGE

Credit: © Tetyana Milojevic

Since the dawn of space exploration, humankind has been fascinated by survival of terrestrial life in outer space. Outer space is a hostile environment for any form of life, but some extraordinarily resistant microorganisms can survive. Such extremophiles may migrate between planets and distribute life across the Universe, underlying the panspermia hypothesis or interplanetary transfer of life.

The extremophilic bacterium Deinococcus radiodurans withstands the drastic influence of outer space: galactic cosmic and solar UV radiation, extreme vacuum, temperature fluctuations, desiccation, freezing, and microgravity. A recent study examined the influence of outer space on this unique microbe on a molecular level. After 1 year of exposure to low Earth orbit (LEO) outside the International Space Station during the Tanpopo space Mission, researches found that D. radiodurans escaped morphological damage and produced numerous outer membrane vesicles. A multifaceted protein and genomic responses were initiated to alleviate cell stress, helping the bacteria to repair DNA damage and defend against reactive oxygen species. Processes underlying transport and energy status were altered in response to space exposure. D. radiodurans used a primordial stress molecule polyamine putrescine as a reactive oxygen species scavenger during regeneration from space exposure.

“These investigations help us to understand the mechanisms and processes through which life can exist beyond Earth, expanding our knowledge how to survive and adapt in the hostile environment of outer space. The results suggest that survival of D. radiodurans in LEO for a longer period is possible due to its efficient molecular response system and indicate that even longer, farther journeys are achievable for organisms with such capabilities” says Tetyana Milojevic, a head of Space Biochemistry group at the University of Vienna and a corresponding author of the study.

Together with the colleagues from Tokyo University of Pharmacy and Life Science (Japan), Research Group Astrobiology at German Aerospace Center (DLR, Cologne), Vienna Metabolomics Centre (ViMe) at the University of Vienna and Center for Microbiome Research at Medical University Graz, researches answered the question not only till which extend but how extremophilic microbes can tolerate drastic space conditions.

###

Publication in Microbiome:

D. Kölbl, E. Rabbow, P. Rettberg, M. Mora, C. Moissl-Eichinger, W. Weckwerth, A. Yamagishi, T. Milojevic “Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission.” Microbiome 8, 150 (2020).

https://doi.org/10.1186/s40168-020-00927-5

Media Contact
Dr. Tetyana Milojevic
[email protected]

Related Journal Article

http://dx.doi.org/10.1186/s40168-020-00927-5

Tags: Cell BiologyMicrobiologyMolecular BiologySpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Northern Arizona University Assistant Professor Jason Ladner

Shedding light on reptilian health: Researchers investigate origins of snake fungal disease in U.S.

June 29, 2022
Artist's impression of Nombe Rockshelter megafauna

New kangaroo described – from PNG

June 29, 2022

Dr. Maria Kontaridis of MMRI elected a fellow of the Nonprofit International Society for Heart Research

June 28, 2022

Role identified for key gene in developmental disability syndrome

June 28, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirusUrogenital SystemVirologyViolence/CriminalsUrbanizationZoology/Veterinary ScienceUniversity of WashingtonWeaponryVaccineVaccinesWeather/StormsVehicles

Recent Posts

  • Shedding light on reptilian health: Researchers investigate origins of snake fungal disease in U.S.
  • Dissolving the problem: Organic vapor induces dissolution of molecular salts
  • New kangaroo described – from PNG
  • Atrial fibrillation after surgery is linked to an increased risk of hospitalization for heart failure
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....