• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Metasurface opens world of polarization

Bioengineer by Bioengineer
June 3, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Device may have far-reaching applications in polarization imaging, quantum optics, and more

IMAGE

Credit: (Image courtesy of Zhujun Shi/Harvard SEAS)

Polarization, the direction in which light vibrates, is invisible to the human eye. Yet, so much of our optical world relies on the control and manipulation of this hidden quality of light.

Materials that can manipulate the polarization of light — known as birefringent materials — are used in everything from digital alarm clocks to medical diagnostics, communications and astronomy.

Just as light’s polarization can vibrate along a straight line or an ellipse, materials can also be linearly or elliptically birefringent. Today, most birefringent materials are intrinsically linear, meaning they can only manipulate the polarization of light in a limited way. If you want to achieve broad polarization manipulation, you need to stack multiple birefringent materials on top of one another, making these devices bulky and inefficient.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences have designed a metasurface that can be continuously tuned from linear to elliptical birefringence, opening up the entire space of polarization control with just one device. This single metasurface can operate as many birefringent materials in parallel, enabling more compact polarization manipulation, which could have far-reaching applications in polarization imaging, quantum optics, and other areas.

The research is published in Science Advances.

“It is a new type of birefringent material,” said Zhujun Shi, a former graduate student at SEAS and first author of the paper. “We are able to tailor broad polarization behavior of a material beyond what naturally exists, which has a lot of practical benefits. What used to require three separate conventional birefringent components now only takes one”.

“The ability to manipulate a fundamental property of light like polarization in completely new ways with a device that is compact and multifunctional will have important applications for quantum optics and optical communications,” said Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS and senior author of the paper.

Metasurfaces are arrays of nanopillars spaced less than a wavelength apart that can perform a range of tasks, including manipulating the phase, amplitude and polarization of light. In the past, Capasso and his team have designed these highly ordered surfaces from the ground up, using simple geometric shapes with only a few design parameters.

In this research, however, the team turned to a new type of design technique known as topological optimization.

“Topological optimization is an inverse approach,” said Shi. “You start with what you want the metasurface to do and then you allow the algorithm to explore the huge parameter space to develop a pattern that can best deliver that function.”

The result was surprising. Instead of neatly ordered rectangular pillars standing like toy soldiers, this metasurface is composed of nested half circles reminiscent of crooked smiley faces — more like something a toddler would draw than a computer.

But these odd shapes have opened up a whole new world of birefringence. Not only can they achieve broad polarization manipulations like transforming linear polarization into any desired elliptical polarization but the polarization can also be tuned by changing the angle of the incoming light.

“Our approach has a wide range of potential applications across industry and scientific research, including polarization aberration correction in advanced optical systems,” said Capasso.

###

This research was co-authored by Alexander Y. Zhu, Zhaoyi Li, Yao-Wei Huang, Wei Ting Chen, and Cheng-Wei Qiu of the National University of Singapore. It was supported in part by the Air Force Office of Scientific Research under award number FA9550-19-1-0135.

Media Contact
Leah Burrows
[email protected]

Original Source

https://www.seas.harvard.edu/news/2020/06/metasurface-opens-world-polarization

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aba3367

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

August 24, 2025
blank

Breast Cancer Recurrence: Insights from Addis Ababa Study

August 24, 2025

Discovering Maize Height Traits Under Water Conditions

August 24, 2025

Unlocking High-Yield Rice Cultivars Through Multivariate Analysis

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    120 shares
    Share 48 Tweet 30
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

Breast Cancer Recurrence: Insights from Addis Ababa Study

Discovering Maize Height Traits Under Water Conditions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.