• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Meta-Apo supports cheaper, quicker microbiome functional assessment

Bioengineer by Bioengineer
January 22, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JING Gongchao

A new algorithm may reduce the need for expensive, time-consuming whole-genome sequencing computations to understand how a microbiome functions. A team led by JING Gongchao of the Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) and SU Xiaoquan of Qingdao University, published their approach, called Meta-Apo, on Jan. 6 in BMC Genomics.

Researchers routinely sequence samples of microbial communities found on human skin, in human guts, and in the environment to understand what genes they contain with the ultimate goal of understanding how they function.

According to JING, the first author of the study, two main approaches exist: shotgun whole-genome sequencing and 16S rRNA gene amplicons. Whole-genome sequencing requires significant sequencing cost as well as computing power to determine all of the genes and their functions in a single sample, while 16S rRNA gene amplicons can quickly tease out a sample’s specific gene for taxonomy information and thus predict how they function.

“However, due to the potential biases in how the amplicons are prepared and gene profile variation among genomes, functional profiles predicted from 16S amplicons may deviate from whole-genome sequencing ones, resulting in misleading results,” said JING. “Our approach, Meta-Apo, greatly reduces or even eliminates such deviation, deducing more consistent diversity patterns between the two approaches.”

Meta-Apo matches pairs of data from whole-genome sequencing and 16S amplicons – each pair is sequenced via both methods – to teach new 16S amplicon samples to better recognize gene function. The results are much more consistent with the whole-genome sequencing results.

“Tests of Meta-Apo on more than 5,000 16S amplicon human microbiome samples from four body sites showed the deviation between the two strategies is significantly reduced by using only 15 training sample pairs,” JING added. “Moreover, Meta-Apo enables cross-platform functional comparison between whole-genome sequencing and amplicon samples, greatly improving 16S-based microbiome diagnoses.”

To test this experimentally, the researchers were able to improve the accuracy of a gingivitis diagnosis from 65% to 95% percent using the 16S-derived functional profiles, produced by training the whole-genome sequencing pairs.

“With the low cost of 16S-amplicon sequencing, Meta-Apo can produce a reliable, high-resolution view of microbiome function equivalent to that offered by shotgun whole-genome sequencing,” SU, senior author of the study, explained.

###

Other contributors include LIU Lu and XU Jian, Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT); CUI Wenzhi, College of Control Science and Engineering, China University of Petroleum; and ZHANG Yufeng, College of Computer Science and Technology, Qingdao University.

The Natural Science Foundation of China, the Shandong Provincial Natural Science Foundation and China Postdoctoral Science Foundation supported this work.

Media Contact
CHENG Jing
[email protected]

Original Source

https://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1186/s12864-020-07307-1

Tags: BiologyGeneticsMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025
Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025

New Evolutionary Classification of Rare CRISPR–Cas Variants

November 6, 2025

European Research Council Awards €10M Synergy Grant to RODIN Project Exploring Cells as Architects of Next-Generation Biomaterials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3D Bioprinted Melanoma Models Revolutionize Cancer Therapy

Sweet-Taste Receptor Gene Evolves in Lorisiform Primates

CMTR2 Mutation in Lung Cancer Reveals Therapy Targets

iv>

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.