• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Membrane proteins of bacteria and humans show surprising similarities

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research cooperation uncovers structure and function of PspA and discovers evolutionary link of a bacterial protein to human ESCRT-III proteins

The cells of simple organisms, such as bacteria, as well as human cells are surrounded by a membrane, which fulfills various tasks including protecting the cell from stress. In a joint project, teams from Johannes Gutenberg University Mainz (JGU) and Forschungszentrum Jülich, with participation of Heinrich Heine University Düsseldorf (HHU), have now discovered that a membrane protein found in bacteria has a similar structure and function as a group of proteins that are responsible for remodeling and rebuilding the cell membrane in humans. No connection between the two protein groups was known before. The team’s research work has been published recently in the renowned journal Cell.

PspA plays a key role in bacterial stress response

The phage shock protein (Psp) system was discovered in bacteria approximately 30 years ago. At the time, it was identified to be a response of Escherichia coli bacteria to infection with special viruses called bacteriophages. Later it became clear that its function in protecting the cell membrane exceeds the specific response to bacteriophage infection. Osmotic stress, heat, cell toxins, or defects in the membrane envelope can also trigger the stress reaction.

“Today, we know that the Psp system is activated in response to numerous types of membrane stress. However, several molecular details still remain puzzling,” explained Professor Dirk Schneider, head of the Membrane Proteins group at JGU. “That’s why we decided to take a closer look at core proteins of the Psp system.” Together with his team, he has recently discovered how the Psp representative IM30 forms a protective carpet-like structure on a cell membrane in order to cope with membrane stress.

In their new work, the scientists scrutinized the phage shock protein A (PspA), which has a key role in the Psp system. Specifically, by using cryo-electron microscopy, it became visible how PspA forms long, spiral-shaped tubes that can enclose a biomembrane in the inner cavity. The high-resolution images now show for the very first time how PspA dissolves individual membranes locally and then reshapes them into larger units or even mediates the formation of new membrane structures.

“Thousands of PspA building blocks can be assembled to form large helical structures. Therefore, they are an ideal research object for our cryo-electron microscopic structural analysis,” said Professor Carsten Sachse from Forschungszentrum Jülich and HHU Düsseldorf. The studies were performed at Jülich together with Dr. Benedikt Junglas, a former doctoral student of Professor Dirk Schneider at JGU. At the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich operates some of the most powerful electron microscopes in Europe and, as of recently, cryo-microscopes for the study of flash-frozen biological samples.

PspA remodels membranes

Under the microscope, the researchers were able to recognize or – in jargon – “resolve” the structure of PspA. The structure of a protein is essential for its function and a defect in the structure can impair the protein function. “Under the microscope, we realized that PspA has a structure similar to ESCRT-III proteins, which our laboratory had already been working on. This came as a complete surprise and showed how important it is to elucidate protein structures in detail,” said Sachse. “After billions of years, the two groups of proteins have genetically diverged so far that their similarities could only be detected based on their structure.”

ESCRT-III proteins are found in all living organisms with a true cell nucleus, including human cells. Here, the ESCRT-III protein complexes are involved in cell membrane remodeling and repair but also play a key role in a number of other cell processes. In bacteria, no proteins of the ESCRT-III family were previously known. “Therefore, PspA and ESCRT-III belong to the same group of proteins. These two perform similar tasks at membranes inside of cells,” said Schneider.

“Based on the similar structural and functional properties of PspA and the eukaryotic ESCRT-III proteins, we have identified PspA as a bacterial member of the evolutionarily conserved ESCRT-III superfamily of membrane remodeling proteins,” the authors wrote in their article for Cell.

###

Related links:

https://www.blogs.uni-mainz.de/fb09-schneider/ – Membrane Proteins group at the JGU Department of Chemistry ;

https://www.fz-juelich.de/portal/EN/ – Forschungszentrum Jülich ;

http://www.fz-juelich.de/er-c/er-c-3 – Structural Biology (ER-C-3) group at the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons at Forschungszentrum Jülich ;

https://www.mpgc-mainz.de/ – Max Planck Graduate Center with Johannes Gutenberg University Mainz

Read more:

https://www.uni-mainz.de/presse/aktuell/12377_ENG_HTML.php – press release “Protective shield: A membrane-attached protein protects bacteria and chloroplasts from stress” (23 Oct. 2020) ;

https://fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2020/notifications/2020-08-19-cryo-electron-microscopy.html – Forschungszentrum Jülich: “Cryo-Electron Microscopy Makes Structure of Important Membrane-deforming Proteins Visible” (19 Aug. 2020) ;

https://www.uni-mainz.de/presse/18298_ENG_HTML.php – press release “Fusion protein controls design of photosynthesis platform” (13 May 2015)

Media Contact
Professor Dr. Dirk Schneider
[email protected]

Original Source

https://www.uni-mainz.de/presse/aktuell/13847_ENG_HTML.php

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2021.05.042

Tags: BacteriologyBiochemistryBiologyCell BiologyChemistry/Physics/Materials SciencesEvolutionMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Rohu Fry Transport: Key Water Quality Insights

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.