• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Medicines made of solid gold to help the immune system

Bioengineer by Bioengineer
June 28, 2019
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By studying the effects of gold nanoparticles on the immune cells related to antibody production, researchers at UNIGE, at Swansea University and at the NCCR “Bio-inspired Materials” are paving the way for more effective vaccines and therapies.

IMAGE

Credit: © UNIGE

Over the past twenty years, the use of nanoparticles in medicine has steadily increased. However, their safety and effect on the human immune system remains an important concern. By testing a variety of gold nanoparticles, researchers at the University of Geneva (UNIGE), in collaboration with the National Centre of Competence in Research “Bio-inspired Materials” and Swansea University Medical School, (United Kingdom), are providing first evidence of their impact upon human B lymphocytes – the immune cells responsible for antibody production. The use of these nanoparticles is expected to improve the efficacy of pharmaceutical products while limiting potential adverse effects. These results, published in the journal ACS Nano, will lead to the development of more targeted and better tolerated therapies, particularly in the field of oncology. The methodology developed makes it also possible to test the biocompatibility of any nanoparticle at an early stage in the development of a new nanodrug.

Responsible for the production of antibodies, B lymphocytes are a crucial part of the human immune system, and therefore an interesting target for the development of preventive and therapeutic vaccines. However, to achieve their goal, vaccines must reach B lymphocytes quickly without being destroyed, making the use of nanoparticles particularly interesting. “Nanoparticles can form a protective vehicle for vaccines – or other drugs – to specifically deliver them where they can be most effective, while sparing other cells,” explains Carole Bourquin, a Professor at the UNIGE’s Faculties of Medicine and Science, who co-led this study. “This targeting also allows the use of a lower dose of immunostimulant while maintaining an effective immune response. It increases its efficacy while reducing side-effects, provided that the nanoparticles are harmless to all immune cells.” Similar studies have already been conducted for other immune cells such as macrophages, which seek out and interact with nanoparticles, but never before for the smaller, and more difficult to handle, B lymphocytes.

Gold is an ideal material

Gold is an excellent candidate for nanomedicine because of its particular physico-chemical properties. Well tolerated by the body and easily malleable, this metal has, for instance, the particularity of absorbing light and then releasing heat, a property that can be exploited in oncology. “Gold nanoparticles can be used to target tumours. When exposed to a light source, the nanoparticles release heat and destroy neighbouring cancer cells. We could also attach a drug to the surface of the nanoparticles to be delivered to a specific location,” explains UNIGE researcher Sandra Hočevar. “To test their safety and the best formula for medical use, we have created gold spheres with or without a polymer coating, as well as gold rods to explore the effects of coating and shape. We then exposed human B lymphocytes to our particles for 24 hours to examine the activation of the immune response.”

By following activation markers expressed on the surface of B cells, the scientists were able to determine how much their nanoparticles activated or inhibited the immune response. While none of the nanoparticles tested demonstrated adverse effects, their influence on the immune response differed depending on their shape and the presence of a surface, polymer coating. “Surface properties, as well as nanoparticle morphology definitely are important when it comes to the nanoparticle-cell interaction. Interestingly, the gold nanorods inhibited the immune response instead of activating it, probably by causing interference on the cell membrane, or because they are heavier”, says Martin Clift, an Associate Professor of Nanotoxicology and In Vitro Systems at Swansea University Medical School, and the project’s co-leader.

Uncoated, spherical particles easily aggregate and are therefore not appropriate for biomedical use. On the other hand, gold spheres coated with a protective polymer are stable and do not impair B lymphocyte function. “And we can easily place the vaccine or drug to be delivered to the B lymphocytes in this coating,” says Carole Bourquin. &laquoIn addition, our study established a methodology for assessing the safety of nanoparticles on B lymphocytes, something that had never been done before. “This could be especially useful for future research, as the use of nanoparticles in medicine still requires clear guidelines.”

Many clinical applications

B cells are at the heart of vaccine response, but also in other areas such as oncology and autoimmune diseases. The gold nanoparticles developed by the team of researchers could make it possible to deliver existing drugs directly to B lymphocytes to reduce the necessary dosage and potential side effects. In fact, studies in patients are already being carried out for the treatment of brain tumours. Gold nanoparticles can be made small enough to cross the blood-brain barrier, allowing specific anti-tumoural drugs to be delivered directly into the cancerous cells.

###

Media Contact
Carole Bourquin
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsnano.9b01492

Tags: BiochemistryMedicine/HealthMicrobiologyPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.